IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/1195.html
   My bibliography  Save this paper

Determining optimal disassembly and recovery strategies

Author

Listed:
  • Teunter, R.H.

Abstract

We present a stochastic dynamic programming algorithm for determining the optimal disassembly and recovery strategy, given the disassembly tree, the process dependent quality distributions of assemblies, and the quality dependent recovery options and associated profits for assemblies. This algorithm generalizes the one proposed by Krikke et al. \\cite{Krikke98} in two ways. First, there can be multiple disassembly processes. Second, partial disassembly is allowed. Both generalizations are important for practise.

Suggested Citation

  • Teunter, R.H., 2004. "Determining optimal disassembly and recovery strategies," Econometric Institute Research Papers EI 2004-09, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:1195
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/1195/ei200409.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Spengler, Th. & Puchert, H. & Penkuhn, T. & Rentz, O., 1997. "Environmental integrated production and recycling management," European Journal of Operational Research, Elsevier, vol. 97(2), pages 308-326, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahman, Shams & Subramanian, Nachiappan, 2012. "Factors for implementing end-of-life computer recycling operations in reverse supply chains," International Journal of Production Economics, Elsevier, vol. 140(1), pages 239-248.
    2. Fleischmann, Moritz & Bloemhof-Ruwaard, Jacqueline M. & Dekker, Rommert & van der Laan, Erwin & van Nunen, Jo A. E. E. & Van Wassenhove, Luk N., 1997. "Quantitative models for reverse logistics: A review," European Journal of Operational Research, Elsevier, vol. 103(1), pages 1-17, November.
    3. Suzanne, Elodie & Absi, Nabil & Borodin, Valeria, 2020. "Towards circular economy in production planning: Challenges and opportunities," European Journal of Operational Research, Elsevier, vol. 287(1), pages 168-190.
    4. Letmathe, Peter & Wagner, Sandra, 2018. "“Messy” marginal costs: Internal pricing of environmental aspects on the firm level," International Journal of Production Economics, Elsevier, vol. 201(C), pages 41-52.
    5. Abdelkader Sbihi & Richard Eglese, 2010. "Combinatorial optimization and Green Logistics," Annals of Operations Research, Springer, vol. 175(1), pages 159-175, March.
    6. Salema, Maria Isabel Gomes & Barbosa-Povoa, Ana Paula & Novais, Augusto Q., 2007. "An optimization model for the design of a capacitated multi-product reverse logistics network with uncertainty," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1063-1077, June.
    7. Hamed Soleimani & Prem Chhetri & Amir M. Fathollahi-Fard & S. M. J. Mirzapour Al-e-Hashem & Shahrooz Shahparvari, 2022. "Sustainable closed-loop supply chain with energy efficiency: Lagrangian relaxation, reformulations and heuristics," Annals of Operations Research, Springer, vol. 318(1), pages 531-556, November.
    8. Le Blanc, H.M. & Fleuren, H.A. & Krikke, H.R., 2002. "Network Designs for LPG Tanks in the Netherlands," Other publications TiSEM 6516dab2-eb20-45d5-b35b-0, Tilburg University, School of Economics and Management.
    9. B. Muller, Daniel, 2006. "Stock dynamics for forecasting material flows--Case study for housing in The Netherlands," Ecological Economics, Elsevier, vol. 59(1), pages 142-156, August.
    10. Chouinard, Marc & D'Amours, Sophie & Aït-Kadi, Daoud, 2008. "A stochastic programming approach for designing supply loops," International Journal of Production Economics, Elsevier, vol. 113(2), pages 657-677, June.
    11. Choi, Dae-Won & Hwang, Hark & Koh, Shie-Gheun, 2007. "A generalized ordering and recovery policy for reusable items," European Journal of Operational Research, Elsevier, vol. 182(2), pages 764-774, October.
    12. Ching-Chin Chern & Hsin-Mei Wang & Kwei-Long Huang, 2017. "A heuristic master planning algorithm for recycling supply chain management," Journal of Intelligent Manufacturing, Springer, vol. 28(4), pages 985-1003, April.
    13. González-Torre, Pilar L. & Adenso-Díaz, Belarmino, 2006. "Reverse logistics practices in the glass sector in Spain and Belgium," International Business Review, Elsevier, vol. 15(5), pages 527-546, October.
    14. Chandiran, P. & Ramasubramaniam, M. & Venkatesh, V.G. & Mani, Venkatesh & Shi, Yangyan, 2023. "Can driver supply disruption alleviate driver shortages? A systems approach," Transport Policy, Elsevier, vol. 130(C), pages 116-129.
    15. Gamberini, Rita & Gebennini, Elisa & Manzini, Riccardo & Ziveri, Andrea, 2010. "On the integration of planning and environmental impact assessment for a WEEE transportation network—A case study," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 937-951.
    16. Fleischmann, Mortiz & Krikke, Hans Ronald & Dekker, Rommert & Flapper, Simme Douwe P., 2000. "A characterisation of logistics networks for product recovery," Omega, Elsevier, vol. 28(6), pages 653-666, December.
    17. V. Daniel R. Guide & Vaidyanathan Jayaraman & Rajesh Srivastava & W. C. Benton, 2000. "Supply-Chain Management for Recoverable Manufacturing Systems," Interfaces, INFORMS, vol. 30(3), pages 125-142, June.
    18. Lee, Der-Horng & Dong, Meng & Bian, Wen, 2010. "The design of sustainable logistics network under uncertainty," International Journal of Production Economics, Elsevier, vol. 128(1), pages 159-166, November.
    19. Sabharwal, Srishti & Garg, Suresh, 2013. "Determining cost effectiveness index of remanufacturing: A graph theoretic approach," International Journal of Production Economics, Elsevier, vol. 144(2), pages 521-532.
    20. Inderfurth, K. & Teunter, R.H., 2001. "Production planning and control of closed-loop supply chains," Econometric Institute Research Papers EI 2001-39, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:1195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.