IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v28y2017i4d10.1007_s10845-015-1040-x.html
   My bibliography  Save this article

A heuristic master planning algorithm for recycling supply chain management

Author

Listed:
  • Ching-Chin Chern

    (National Taiwan University)

  • Hsin-Mei Wang

    (National Taiwan University)

  • Kwei-Long Huang

    (National Taiwan University)

Abstract

This study focuses on solving a multi-objective master planning (MP) problem for a recycling supply chain, including collectors, disassemblers, shredders, reconditioners and garbage handlers. An MP problem for a recycling supply chain is solved to determine the optimal transporting and processing operations, while considering multiple product structures, multiple discrete planning periods, and multiple demands, stocking and garbage handling quantities. To solve the MP problem, we propose a multiple-goal mixed integer programming model with two objectives: minimize the total delay cost and minimize the sum of processing cost, transportation cost, holding cost, setup cost and garbage handling cost. To improve the effectiveness and efficiency of the solution process, we propose a heuristic algorithm, RPMPA, which consists of three phases: preliminary works, demand grouping and sorting algorithm, and the Recycling Process Path Selection Algorithm. We built a prototype based on RPMPA, and constructed a scenario analysis to show the effectiveness and efficiency of RPMPA.

Suggested Citation

  • Ching-Chin Chern & Hsin-Mei Wang & Kwei-Long Huang, 2017. "A heuristic master planning algorithm for recycling supply chain management," Journal of Intelligent Manufacturing, Springer, vol. 28(4), pages 985-1003, April.
  • Handle: RePEc:spr:joinma:v:28:y:2017:i:4:d:10.1007_s10845-015-1040-x
    DOI: 10.1007/s10845-015-1040-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-015-1040-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-015-1040-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fröhling, Magnus & Schwaderer, Frank & Bartusch, Hauke & Rentz, Otto, 2010. "Integrated planning of transportation and recycling for multiple plants based on process simulation," European Journal of Operational Research, Elsevier, vol. 207(2), pages 958-970, December.
    2. Fleischmann, Moritz & Bloemhof-Ruwaard, Jacqueline M. & Dekker, Rommert & van der Laan, Erwin & van Nunen, Jo A. E. E. & Van Wassenhove, Luk N., 1997. "Quantitative models for reverse logistics: A review," European Journal of Operational Research, Elsevier, vol. 103(1), pages 1-17, November.
    3. van der Laan, Erwin & Dekker, Rommert & Salomon, Marc & Ridder, Ad, 1996. "An (s, Q) inventory model with remanufacturing and disposal," International Journal of Production Economics, Elsevier, vol. 46(1), pages 339-350, December.
    4. van der Laan, Erwin & Salomon, Marc, 1997. "Production planning and inventory control with remanufacturing and disposal," European Journal of Operational Research, Elsevier, vol. 102(2), pages 264-278, October.
    5. V Jayaraman & V D R Guide & R Srivastava, 1999. "A closed-loop logistics model for remanufacturing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(5), pages 497-508, May.
    6. Fleischmann, Mortiz & Krikke, Hans Ronald & Dekker, Rommert & Flapper, Simme Douwe P., 2000. "A characterisation of logistics networks for product recovery," Omega, Elsevier, vol. 28(6), pages 653-666, December.
    7. Spengler, Th. & Puchert, H. & Penkuhn, T. & Rentz, O., 1997. "Environmental integrated production and recycling management," European Journal of Operational Research, Elsevier, vol. 97(2), pages 308-326, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. V. Daniel R. Guide & Vaidyanathan Jayaraman & Rajesh Srivastava & W. C. Benton, 2000. "Supply-Chain Management for Recoverable Manufacturing Systems," Interfaces, INFORMS, vol. 30(3), pages 125-142, June.
    2. Abdelkader Sbihi & Richard Eglese, 2010. "Combinatorial optimization and Green Logistics," Annals of Operations Research, Springer, vol. 175(1), pages 159-175, March.
    3. Özceylan, Eren & Paksoy, Turan & Bektaş, Tolga, 2014. "Modeling and optimizing the integrated problem of closed-loop supply chain network design and disassembly line balancing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 142-164.
    4. De Giovanni, Pietro & Zaccour, Georges, 2014. "A two-period game of a closed-loop supply chain," European Journal of Operational Research, Elsevier, vol. 232(1), pages 22-40.
    5. Gregory A. DeCroix, 2006. "Optimal Policy for a Multiechelon Inventory System with Remanufacturing," Operations Research, INFORMS, vol. 54(3), pages 532-543, June.
    6. Srivastava, Samir K., 2008. "Network design for reverse logistics," Omega, Elsevier, vol. 36(4), pages 535-548, August.
    7. L K Chu & Y Shi & S Lin & D Sculli & J Ni, 2010. "Fuzzy chance-constrained programming model for a multi-echelon reverse logistics network for household appliances," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 551-560, April.
    8. Poles, Roberto, 2013. "System Dynamics modelling of a production and inventory system for remanufacturing to evaluate system improvement strategies," International Journal of Production Economics, Elsevier, vol. 144(1), pages 189-199.
    9. Choi, Dae-Won & Hwang, Hark & Koh, Shie-Gheun, 2007. "A generalized ordering and recovery policy for reusable items," European Journal of Operational Research, Elsevier, vol. 182(2), pages 764-774, October.
    10. González-Torre, Pilar L. & Adenso-Díaz, Belarmino, 2006. "Reverse logistics practices in the glass sector in Spain and Belgium," International Business Review, Elsevier, vol. 15(5), pages 527-546, October.
    11. Fleischmann, Mortiz & Krikke, Hans Ronald & Dekker, Rommert & Flapper, Simme Douwe P., 2000. "A characterisation of logistics networks for product recovery," Omega, Elsevier, vol. 28(6), pages 653-666, December.
    12. Vercraene, Samuel & Gayon, Jean-Philippe, 2013. "Optimal control of a production-inventory system with productreturns," International Journal of Production Economics, Elsevier, vol. 142(2), pages 302-310.
    13. Schultmann, Frank & Zumkeller, Moritz & Rentz, Otto, 2006. "Modeling reverse logistic tasks within closed-loop supply chains: An example from the automotive industry," European Journal of Operational Research, Elsevier, vol. 171(3), pages 1033-1050, June.
    14. M. Tadaros & A. Migdalas & B. Samuelsson & A. Segerstedt, 2022. "Location of facilities and network design for reverse logistics of lithium-ion batteries in Sweden," Operational Research, Springer, vol. 22(2), pages 895-915, April.
    15. Sabharwal, Srishti & Garg, Suresh, 2013. "Determining cost effectiveness index of remanufacturing: A graph theoretic approach," International Journal of Production Economics, Elsevier, vol. 144(2), pages 521-532.
    16. Barker, Theresa J. & Zabinsky, Zelda B., 2011. "A multicriteria decision making model for reverse logistics using analytical hierarchy process," Omega, Elsevier, vol. 39(5), pages 558-573, October.
    17. Fleischmann, M., 2001. "Reverse Logistics Network Structures and Design," ERIM Report Series Research in Management ERS-2001-52-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    18. Agrawal, Saurabh & Singh, Rajesh K. & Murtaza, Qasim, 2015. "A literature review and perspectives in reverse logistics," Resources, Conservation & Recycling, Elsevier, vol. 97(C), pages 76-92.
    19. Kristin Sahyouni & R. Canan Savaskan & Mark S. Daskin, 2007. "A Facility Location Model for Bidirectional Flows," Transportation Science, INFORMS, vol. 41(4), pages 484-499, November.
    20. Jayaraman, Vaidyanathan & Patterson, Raymond A. & Rolland, Erik, 2003. "The design of reverse distribution networks: Models and solution procedures," European Journal of Operational Research, Elsevier, vol. 150(1), pages 128-149, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:28:y:2017:i:4:d:10.1007_s10845-015-1040-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.