IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/116745.html
   My bibliography  Save this paper

New Misspecification Tests for Multinomial Logit Models

Author

Listed:
  • Fok, D.
  • Paap, R.

Abstract

Misspecification tests for Multinomial Logit [MNL] models are known to have low power or large size distortion. We propose two new misspecification tests. Both use that preferences across binary pairs of alternatives can be described by independent binary logit models when MNL is true. The first test compares Composite Likelihood parameter estimates based on choice pairs with standard Maximum Likelihood estimates using a Hausman (1978) test. The second tests for overidentification in a GMM framework using more pairs than necessary. A Monte Carlo study shows that the GMM test is in general superior with respect to power and has correct size

Suggested Citation

  • Fok, D. & Paap, R., 2019. "New Misspecification Tests for Multinomial Logit Models," Econometric Institute Research Papers EI2019-24, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:116745
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/116745/ei2019-24.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Small, Kenneth A & Hsiao, Cheng, 1985. "Multinomial Logit Specification Tests," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 26(3), pages 619-627, October.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Fry, Tim R. L. & Harris, Mark N., 1996. "A Monte Carlo study of tests for the independence of irrelevant alternatives property," Transportation Research Part B: Methodological, Elsevier, vol. 30(1), pages 19-30, February.
    4. Hausman, Jerry A & Wise, David A, 1978. "A Conditional Probit Model for Qualitative Choice: Discrete Decisions Recognizing Interdependence and Heterogeneous Preferences," Econometrica, Econometric Society, vol. 46(2), pages 403-426, March.
    5. Ray, Paramesh, 1973. "Independence of Irrelevant Alternatives," Econometrica, Econometric Society, vol. 41(5), pages 987-991, September.
    6. Koen Bel & Dennis Fok & Richard Paap, 2018. "Parameter estimation in multivariate logit models with many binary choices," Econometric Reviews, Taylor & Francis Journals, vol. 37(5), pages 534-550, May.
    7. Geweke, John & Keane, Michael P & Runkle, David, 1994. "Alternative Computational Approaches to Inference in the Multinomial Probit Model," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 609-632, November.
    8. Theil, Henri, 1969. "A Multinomial Extension of the Linear Logit Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 10(3), pages 251-259, October.
    9. Hausman, Jerry & McFadden, Daniel, 1984. "Specification Tests for the Multinomial Logit Model," Econometrica, Econometric Society, vol. 52(5), pages 1219-1240, September.
    10. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    11. Simon Cheng & J. Scott Long, 2007. "Testing for IIA in the Multinomial Logit Model," Sociological Methods & Research, , vol. 35(4), pages 583-600, May.
    12. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erik Stam & Roy Thurik & Peter van der Zwan, 2010. "Entrepreneurial exit in real and imagined markets," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 19(4), pages 1109-1139, August.
    2. Vijverberg, Wim P., 2011. "Testing for IIA with the Hausman-McFadden Test," IZA Discussion Papers 5826, Institute of Labor Economics (IZA).
    3. Arjun Seshadri & Johan Ugander, 2020. "Fundamental Limits of Testing the Independence of Irrelevant Alternatives in Discrete Choice," Papers 2001.07042, arXiv.org.
    4. Hahn, Jinyong & Hausman, Jerry & Lustig, Josh, 2020. "Specification test on mixed logit models," Journal of Econometrics, Elsevier, vol. 219(1), pages 19-37.
    5. Curtis, John & McCoy, Daire & Aravena, Claudia, 2018. "Heating system upgrades: The role of knowledge, socio-demographics, building attributes and energy infrastructure," Energy Policy, Elsevier, vol. 120(C), pages 183-196.
    6. Tim R. L. Fry & Mark N. Harris, 1998. "Testing for Independence of Irrelevant Alternatives," Sociological Methods & Research, , vol. 26(3), pages 401-423, February.
    7. Simon Cheng & J. Scott Long, 2007. "Testing for IIA in the Multinomial Logit Model," Sociological Methods & Research, , vol. 35(4), pages 583-600, May.
    8. Bartolj, Tjaša & Polanec, Sašo, 2012. "College major choice and ability: Why is general ability not enough?," Economics of Education Review, Elsevier, vol. 31(6), pages 996-1016.
    9. Junsen Zhang & Saul D. Hoffman, 1993. "Discrete-Choice Logit Models," Sociological Methods & Research, , vol. 22(2), pages 193-213, November.
    10. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    11. Nathan H. Miller, 2008. "Competition When Consumers Value Firm Scope," EAG Discussions Papers 200807, Department of Justice, Antitrust Division.
    12. Tao, Hung-Lin, 2014. "Height, weight, and entry earnings of female graduates in Taiwan," Economics & Human Biology, Elsevier, vol. 13(C), pages 85-98.
    13. Toşa, Cristian & Sato, Hitomi & Morikawa, Takayuki & Miwa, Tomio, 2018. "Commuting behavior in emerging urban areas: Findings of a revealed-preferences and stated-intentions survey in Cluj-Napoca, Romania," Journal of Transport Geography, Elsevier, vol. 68(C), pages 78-93.
    14. Nevo, Aviv, 2001. "Measuring Market Power in the Ready-to-Eat Cereal Industry," Econometrica, Econometric Society, vol. 69(2), pages 307-342, March.
    15. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    16. Zhang, Xiao & Boscardin, W. John & Belin, Thomas R., 2008. "Bayesian analysis of multivariate nominal measures using multivariate multinomial probit models," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3697-3708, March.
    17. Monfardini, Chiara, 2003. "An illustration of Cox's non-nested testing procedure for logit and probit models," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 425-444, March.
    18. Peter Davis & Pasquale Schiraldi, 2014. "The flexible coefficient multinomial logit (FC-MNL) model of demand for differentiated products," RAND Journal of Economics, RAND Corporation, vol. 45(1), pages 32-63, March.
    19. Amoh-Gyimah, Richard & Aidoo, Eric Nimako, 2013. "Mode of transport to work by government employees in the Kumasi metropolis, Ghana," Journal of Transport Geography, Elsevier, vol. 31(C), pages 35-43.
    20. Cécile Détang‐Dessendre & Florence Goffette‐Nagot & Virginie Piguet, 2008. "Life Cycle And Migration To Urban And Rural Areas: Estimation Of A Mixed Logit Model On French Data," Journal of Regional Science, Wiley Blackwell, vol. 48(4), pages 789-824, October.

    More about this item

    Keywords

    Discrete choices; Multinomial Logit; IIA; Hausman test; Composite Likelihood;
    All these keywords.

    JEL classification:

    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:116745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.