IDEAS home Printed from https://ideas.repec.org/p/emc/wpaper/dte465.html
   My bibliography  Save this paper

Long-run Cost Functions for Electricity Transmission

Author

Listed:
  • Juan Rosellon

    (Division of Economics, CIDE)

  • Ingo Vogelsang
  • Hannes Weigt

Abstract

Electricity transmission has become the pivotal industry segment for electricity restructuring. Yet, little is known about the shape of transmission cost functions. Reasons for this can be a lack of consensus about the definition of transmission output and the complexity of the relationship between optimal grid expansion and output expansion. Knowledge of transmission cost functions could help firms (Transcos) and regulators plan transmission expansion and could help design regulatory incentive mechanisms. We explore transmission cost functions when the transmission output is defined as point-to-point transactions or financial transmission right (FTR) obligations and particularly explore expansion under loop-flows. We test the behavior of FTR-based cost functions for distinct network topologies and find evidence that cost functions defined as FTR outputs are piecewise differentiable and that they contain sections with negative marginal costs. Simulations, however, illustrate that such unusual properties do not stand in the way of applying price-cap incentive mechanisms to real-world transmission expansion.

Suggested Citation

  • Juan Rosellon & Ingo Vogelsang & Hannes Weigt, 2009. "Long-run Cost Functions for Electricity Transmission," Working Papers DTE 465, CIDE, División de Economía.
  • Handle: RePEc:emc:wpaper:dte465
    as

    Download full text from publisher

    File URL: http://www.economiamexicana.cide.edu/RePEc/emc/pdf/DTE/DTE465.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Paul Joskow & Jean Tirole, 2005. "Merchant Transmission Investment," Journal of Industrial Economics, Wiley Blackwell, vol. 53(2), pages 233-264, June.
    2. Juan Rosellón & Hannes Weigt, 2011. "A Dynamic Incentive Mechanism for Transmission Expansion in Electricity Networks: Theory, Modeling, and Application," The Energy Journal, , vol. 32(1), pages 119-148, January.
    3. Wu, Felix & Varaiya, Pravin & Spiller, Pablo & Oren, Shmuel, 1996. "Folk Theorems on Transmission Access: Proofs and Counterexamples," Journal of Regulatory Economics, Springer, vol. 10(1), pages 5-23, July.
    4. Oren, Shmuel S. & Spiller, Pablo T. & Varaiya, Pravin & Wu, Felix, 1995. "Nodal prices and transmission rights: A critical appraisal," The Electricity Journal, Elsevier, vol. 8(3), pages 24-35, April.
    5. Thomas-Olivier Leautier, 2000. "Regulation of an Electric Power Transmission Company," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 61-92.
    6. Laffont, Jean-Jacques & Tirole, Jean, 1996. "Creating Competition through Interconnection: Theory and Practice," Journal of Regulatory Economics, Springer, vol. 10(3), pages 227-256, November.
    7. Juan Rosellon & Hannes Weigt, 2007. "A Combined Merchant-Regulatory Mechanism for Electricity Transmission Expansion in Europe," Working Papers DTE 396, CIDE, División de Economía.
    8. Makoto Tanaka, 2007. "Extended Price Cap Mechanism for Efficient Transmission Expansion under Nodal Pricing," Networks and Spatial Economics, Springer, vol. 7(3), pages 257-275, September.
    9. Vogelsang, Ingo, 2001. "Price Regulation for Independent Transmission Companies," Journal of Regulatory Economics, Springer, vol. 20(2), pages 141-165, September.
    10. Bushnell, James B & Stoft, Steven E, 1996. "Electric Grid Investment under a Contract Network Regime," Journal of Regulatory Economics, Springer, vol. 10(1), pages 61-79, July.
    11. William Hogan & Juan Rosellón & Ingo Vogelsang, 2010. "Toward a combined merchant-regulatory mechanism for electricity transmission expansion," Journal of Regulatory Economics, Springer, vol. 38(2), pages 113-143, October.
    12. Ingo Vogelsang, 2006. "Electricity Transmission Pricing and Performance-based Regulation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 97-126.
    13. Baldick, Ross & Kahn, Edward, 1993. "Network Costs and the Regulation of Wholesale Competition in Electric Power," Journal of Regulatory Economics, Springer, vol. 5(4), pages 367-384, December.
    14. Bushnell, James B. & Stoft, Steven E., 1997. "Improving private incentives for electric grid investment," Resource and Energy Economics, Elsevier, vol. 19(1-2), pages 85-108, March.
    15. Hogan, William W, 1992. "Contract Networks for Electric Power Transmission," Journal of Regulatory Economics, Springer, vol. 4(3), pages 211-242, September.
    16. Green, Richard, 1997. "Electricity transmission pricing: an international comparison," Utilities Policy, Elsevier, vol. 6(3), pages 177-184, September.
    17. Chao, Hung-Po & Peck, Stephen, 1996. "A Market Mechanism for Electric Power Transmission," Journal of Regulatory Economics, Springer, vol. 10(1), pages 25-59, July.
    18. Tarjei Kristiansen & Juan Rosellón, 2006. "A Merchant Mechanism for Electricity Transmission Expansion," Journal of Regulatory Economics, Springer, vol. 29(2), pages 167-193, March.
    19. Bresesti, Paola & Calisti, Roberto & Cazzol, Maria Vittoria & Gatti, Antonio & Provenzano, Dario & Vaiani, Andrea & Vailati, Riccardo, 2009. "The benefits of transmission expansions in the competitive electricity markets," Energy, Elsevier, vol. 34(3), pages 274-280.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Egerer, Jonas & Rosellón, Juan & Schill, Wolf-Peter, 2015. "Power System Transformation toward Renewables: An Evaluation of Regulatory Approaches for Network Expansion," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 36(4), pages 105-128.
    2. Ruiz, Erix & Rosellón, Juan, 2012. "Transmission investment in the Peruvian electricity market: Theory and applications," Energy Policy, Elsevier, vol. 47(C), pages 238-245.
    3. Anne Neumann & Juan Rosellón & Hannes Weigt, 2015. "Removing Cross-Border Capacity Bottlenecks in the European Natural Gas Market—A Proposed Merchant-Regulatory Mechanism," Networks and Spatial Economics, Springer, vol. 15(1), pages 149-181, March.
    4. Herrera, Luis Ángel & Rosellón, Juan, 2014. "On distributive effects of optimal regulation for power grid expansion," Energy Policy, Elsevier, vol. 69(C), pages 189-204.
    5. Hagspiel, Simeon & Jägemann, Cosima & Lindenberger, Dietmar & Brown, Tom & Cherevatskiy, Stanislav & Tröster, Eckehard, 2013. "Cost-Optimal Power System Extension under Flow-Based Market Coupling," EWI Working Papers 2013-9, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    6. N. Gülpınar & F. Oliveira, 2014. "Analysis of relationship between forward and spot markets in oligopolies under demand and cost uncertainties," Computational Management Science, Springer, vol. 11(3), pages 267-283, July.
    7. Schill, Wolf-Peter & Egerer, Jonas & Rosellón, Juan, 2015. "Testing Regulatory Regimes for Power Transmission Expansion with Fluctuating Demand and Wind Generation," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 47(1), pages 1-28.
    8. von Hirschhausen, Christian, 2012. "Green electricity investment in Europe: Development scenarios for generation and transmission investments," EIB Working Papers 2012/04, European Investment Bank (EIB).
    9. He, Ruofan & Wan, Panbing, 2024. "Electricity market integration in China: The role of government officials’ hometown ties," Energy, Elsevier, vol. 303(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rosellon, Juan & Tregear, Juan & Zenon, Eric, 2010. "El modelo HRV para expansión óptima de redes de transmisión: una aplicación a la red eléctrica de Ontario [The HRV Model for the Optimal Expansion of Transmission Networks: an Application to the On," MPRA Paper 26471, University Library of Munich, Germany.
    2. William Hogan & Juan Rosellón & Ingo Vogelsang, 2010. "Toward a combined merchant-regulatory mechanism for electricity transmission expansion," Journal of Regulatory Economics, Springer, vol. 38(2), pages 113-143, October.
    3. Wolf-Peter Schill & Jonas Egerer & Juan Rosellón, 2015. "Testing regulatory regimes for power transmission expansion with fluctuating demand and wind generation," Journal of Regulatory Economics, Springer, vol. 47(1), pages 1-28, February.
    4. Matsukawa, Isamu, 2008. "The effects of average revenue regulation on electricity transmission investment and pricing," Energy Economics, Elsevier, vol. 30(3), pages 696-714, May.
    5. Richard O’Neill & Emily Fisher & Benjamin Hobbs & Ross Baldick, 2008. "Towards a complete real-time electricity market design," Journal of Regulatory Economics, Springer, vol. 34(3), pages 220-250, December.
    6. Ruderer, Dominik & Zöttl, Gregor, 2018. "Transmission pricing and investment incentives," Utilities Policy, Elsevier, vol. 55(C), pages 14-30.
    7. Biggar, Darryl R. & Hesamzadeh, Mohammad Reza, 2022. "An integrated theory of dispatch and hedging in wholesale electric power markets," Energy Economics, Elsevier, vol. 112(C).
    8. Paul Joskow & Jean Tirole, 2005. "Merchant Transmission Investment," Journal of Industrial Economics, Wiley Blackwell, vol. 53(2), pages 233-264, June.
    9. Makoto TANAKA, 2005. "Optimal Transmission Capacity under Nodal Pricing and Incentive Regulation for Transco," Discussion papers 05021, Research Institute of Economy, Trade and Industry (RIETI).
    10. Stephen Littlechild, 2012. "Merchant and regulated transmission: theory, evidence and policy," Journal of Regulatory Economics, Springer, vol. 42(3), pages 308-335, December.
    11. Wu, F.F & Zheng, F.L. & Wen, F.S., 2006. "Transmission investment and expansion planning in a restructured electricity market," Energy, Elsevier, vol. 31(6), pages 954-966.
    12. Thomas-Olivier Léautier & Véronique Thelen, 2009. "Optimal expansion of the power transmission grid: why not?," Journal of Regulatory Economics, Springer, vol. 36(2), pages 127-153, October.
    13. Juan Rosellón & Hannes Weigt, 2011. "A Dynamic Incentive Mechanism for Transmission Expansion in Electricity Networks: Theory, Modeling, and Application," The Energy Journal, , vol. 32(1), pages 119-148, January.
    14. Stephen C. Littlechild & Carlos J. Skerk, 2004. "Regulation of transmission expansion in Argentina Part I: State ownership, reform and the Fourth Line," Working Papers EP61, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    15. Jonas Egerer & Juan Rosellon & Wolf-Peter Schill, 2015. "Power System Transformation toward Renewables: An Evaluation of Regulatory Approaches for Network Expansion," The Energy Journal, , vol. 36(4), pages 105-128, October.
    16. Juan Rosellón, 2009. "Mechanisms for the Optimal Expansion of Electricity Transmission Networks," Chapters, in: Joanne Evans & Lester C. Hunt (ed.), International Handbook on the Economics of Energy, chapter 24, Edward Elgar Publishing.
    17. Littlechild, Stephen C. & Skerk, Carlos J., 2008. "Transmission expansion in Argentina 2: The Fourth Line revisited," Energy Economics, Elsevier, vol. 30(4), pages 1385-1419, July.
    18. Ingo Vogelsang, 2006. "Electricity Transmission Pricing and Performance-based Regulation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 97-126.
    19. Dagobert Brito & Juan Rosellón, 2011. "Lumpy Investment in Regulated Natural Gas Pipelines: An Application of the Theory of the Second Best," Networks and Spatial Economics, Springer, vol. 11(3), pages 533-553, September.
    20. Bastian Henze & Charles Noussair & Bert Willems, 2012. "Regulation of network infrastructure investments: an experimental evaluation," Journal of Regulatory Economics, Springer, vol. 42(1), pages 1-38, August.

    More about this item

    Keywords

    Electricity Transmission; transmission cost functions; loop-flows; FTR-based cost functions.;
    All these keywords.

    JEL classification:

    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • D23 - Microeconomics - - Production and Organizations - - - Organizational Behavior; Transaction Costs; Property Rights

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:emc:wpaper:dte465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mateo Hoyos (email available below). General contact details of provider: https://edirc.repec.org/data/cideemx.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.