IDEAS home Printed from https://ideas.repec.org/p/ema/worpap/2023-22.html
   My bibliography  Save this paper

Risk management of margin based portfolio strategies for dynamic portfolio insurance with minimum market exposure

Author

Listed:
  • Killian Pluzanski
  • Jean-Luc Prigent

    (Université de Cergy-Pontoise, THEMA)

Abstract

We extend the standard Constant Proportion Portfolio Insurance (CPPI) by introducing simultaneously margin based dynamic strategies and constraints on minimum market expo- sure. This leads us to introduce specific conditional floors, allowing the portfolio of not being monetized (to avoid the cash-lock risk) while ensuring better participation in potential market increases. To control the risk of such strategies, we introduce risk measures based both on quantile conditions. Our empirical analysis is mainly conducted on S&P 500 and Euro Stoxx 50, by using Monte-Carlo experiments based on circular block boostrap method. This allows us to analyze the impact of the different parameters that define our CPPI strategies (i.e. CPPI multiple, successive margins, level of the minimum market exposure). We estimate and compare the cumulative distribution functions of the portfolio returns corresponding to the various insur- ance strategies that we investigate. We provide also their first four moments and measure their respective performances using both the Sharpe and the Omega ratios. Our results highlight the benefits of introducing time-varying floors associated to a decreasing sequence of margins while keeping the market exposure above a minimum level.

Suggested Citation

  • Killian Pluzanski & Jean-Luc Prigent, 2023. "Risk management of margin based portfolio strategies for dynamic portfolio insurance with minimum market exposure," THEMA Working Papers 2023-22, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
  • Handle: RePEc:ema:worpap:2023-22
    as

    Download full text from publisher

    File URL: https://thema.u-cergy.fr/IMG/pdf/2023-22.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexei Chekhlov & Stanislav Uryasev & Michael Zabarankin, 2005. "Drawdown Measure In Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 13-58.
    2. Ben Ameur, H. & Prigent, J.L., 2014. "Portfolio insurance: Gap risk under conditional multiples," European Journal of Operational Research, Elsevier, vol. 236(1), pages 238-253.
    3. Rama Cont & Peter Tankov, 2009. "Constant Proportion Portfolio Insurance In The Presence Of Jumps In Asset Prices," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 379-401, July.
    4. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    5. Hans FÃllmer & Peter Leukert, 2000. "Efficient hedging: Cost versus shortfall risk," Finance and Stochastics, Springer, vol. 4(2), pages 117-146.
    6. Black, Fischer & Perold, AndreF., 1992. "Theory of constant proportion portfolio insurance," Journal of Economic Dynamics and Control, Elsevier, vol. 16(3-4), pages 403-426.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamidi, Benjamin & Maillet, Bertrand & Prigent, Jean-Luc, 2014. "A dynamic autoregressive expectile for time-invariant portfolio protection strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 46(C), pages 1-29.
    2. David Happersberger & Harald Lohre & Ingmar Nolte, 2020. "Estimating portfolio risk for tail risk protection strategies," European Financial Management, European Financial Management Association, vol. 26(4), pages 1107-1146, September.
    3. Katia Colaneri & Daniele Mancinelli & Immacolata Oliva, 2024. "On the optimal design of a new class of proportional portfolio insurance strategies in a jump-diffusion framework," Papers 2407.21148, arXiv.org.
    4. Emiel Lemahieu & Kris Boudt & Maarten Wyns, 2023. "Generating drawdown-realistic financial price paths using path signatures," Papers 2309.04507, arXiv.org.
    5. Marcos Escobar-Anel & Andreas Lichtenstern & Rudi Zagst, 2020. "Behavioral portfolio insurance strategies," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(4), pages 353-399, December.
    6. Peyman Alipour & Ali Foroush Bastani, 2023. "Value-at-Risk-Based Portfolio Insurance: Performance Evaluation and Benchmarking Against CPPI in a Markov-Modulated Regime-Switching Market," Papers 2305.12539, arXiv.org.
    7. Wentao Hu & Cuixia Chen & Yufeng Shi & Ze Chen, 2022. "A Tail Measure With Variable Risk Tolerance: Application in Dynamic Portfolio Insurance Strategy," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 831-874, June.
    8. Sami Attaoui & Vincent Lacoste, 2013. "A scenario-based description of optimal American capital guaranteed strategies," Finance, Presses universitaires de Grenoble, vol. 34(2), pages 65-119.
    9. Manfred Gilli & Enrico Schumann, 2012. "Heuristic optimisation in financial modelling," Annals of Operations Research, Springer, vol. 193(1), pages 129-158, March.
    10. Ben Ameur, H. & Prigent, J.L., 2014. "Portfolio insurance: Gap risk under conditional multiples," European Journal of Operational Research, Elsevier, vol. 236(1), pages 238-253.
    11. Ben Ameur, H. & Prigent, J.-L., 2018. "Risk management of time varying floors for dynamic portfolio insurance," European Journal of Operational Research, Elsevier, vol. 269(1), pages 363-381.
    12. Raquel M. Gaspar, 2016. "On Path–dependency of Constant Proportion Portfolio Insurance strategies," EcoMod2016 9381, EcoMod.
    13. Schied, Alexander, 2014. "Model-free CPPI," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 84-94.
    14. Alexandre Hocquard & Nicolas Papageorgiou & Bruno Remillard, 2015. "The payoff distribution model: an application to dynamic portfolio insurance," Quantitative Finance, Taylor & Francis Journals, vol. 15(2), pages 299-312, February.
    15. Xiu Xu & Andrija Mihoci & Wolfgang Karl Hardle, 2020. "lCARE -- localizing Conditional AutoRegressive Expectiles," Papers 2009.13215, arXiv.org.
    16. Ola Mahmoud, 2015. "The Temporal Dimension of Risk," Papers 1501.01573, arXiv.org, revised Jun 2016.
    17. Farid MKAOUAR & Jean-luc PRIGENT, 2014. "Constant Proportion Portfolio Insurance under Tolerance and Transaction Costs," Working Papers 2014-303, Department of Research, Ipag Business School.
    18. Xu, Xiu & Mihoci, Andrija & Härdle, Wolfgang Karl, 2018. "lCARE - localizing conditional autoregressive expectiles," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 198-220.
    19. Baosheng Yuan & Kan Chen, 2006. "Impact of investor’s varying risk aversion on the dynamics of asset price fluctuations," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 1(2), pages 189-214, November.
    20. De Franco, Carmine & Tankov, Peter, 2011. "Portfolio insurance under a risk-measure constraint," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 361-370.

    More about this item

    Keywords

    Portfolio insurance; CPPI strategy; time vaying floor; margin based strategy; market exposure;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ema:worpap:2023-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stefania Marcassa (email available below). General contact details of provider: https://edirc.repec.org/data/themafr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.