IDEAS home Printed from https://ideas.repec.org/p/ekd/008007/8669.html
   My bibliography  Save this paper

Artificial Neural Networks and Automatic Time Series Analysis, methodological approach, results and examples using health-related time series

Author

Listed:
  • Belen Garcia Carceles
  • Belén García Cárceles
  • Bernardí Cabrer Borrás
  • Jose Manuel Pavía Miralles

Abstract

Time series modeling by the use of automatic signal extraction methods has been widely studied and used in different contexts of economic analysis. The methodological innovation of ARIMA / SARIMA models estimation made significant contributions to the understanding of temporal dynamics of events, even when the time structure was apparently irregular and unpredictable. The popularity of these models was reflected in the development of applications that implemented algorithms that automaticaly extract temporal patterns of the series and provide a reasonably accurate adjustment by a mathematical model, making it also in a quick and consistent manner. One of the most common use of these programs is in the univariate analysis context, to achieve its filtering for its posterior use in a multivariate structure. However, there is significant untapped potential in the results provided by those applications. In this paper there's a description of the methodology with which the use of TRAMO SEATS and X13 ARIMA is implemented directly in a multivariate structure. Specifically, we have applied data analysis techniques related to artificial neural networks. UNder the neural networks philosophy, events are conceived as linked nodes which activate or not depending on the intensity of an imput signal. At that point come into play STRETCH or X13. To illustrate the methodology and the use of the model, series of health-related time are used, and a consistent model able to "react" to the dynamic interrelations of the variables considered is described. Standard panel data modeling is included in the example and compared with the new methodology.

Suggested Citation

  • Belen Garcia Carceles & Belén García Cárceles & Bernardí Cabrer Borrás & Jose Manuel Pavía Miralles, 2015. "Artificial Neural Networks and Automatic Time Series Analysis, methodological approach, results and examples using health-related time series," EcoMod2015 8669, EcoMod.
  • Handle: RePEc:ekd:008007:8669
    as

    Download full text from publisher

    File URL: http://ecomod.net/system/files/Garcia_FCTACCNET_15.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    2. Tashman, Leonard J., 2000. "Out-of-sample tests of forecasting accuracy: an analysis and review," International Journal of Forecasting, Elsevier, vol. 16(4), pages 437-450.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    2. Artur Tarassow, 2017. "Forecasting growth of U.S. aggregate and household-sector M2 after 2000 using economic uncertainty measures," Macroeconomics and Finance Series 201702, University of Hamburg, Department of Socioeconomics.
    3. Zanetti Chini, Emilio, 2018. "Forecasting dynamically asymmetric fluctuations of the U.S. business cycle," International Journal of Forecasting, Elsevier, vol. 34(4), pages 711-732.
    4. Phan, Dinh Hoang Bach & Sharma, Susan Sunila & Narayan, Paresh Kumar, 2015. "Stock return forecasting: Some new evidence," International Review of Financial Analysis, Elsevier, vol. 40(C), pages 38-51.
    5. Wenzel, Lars & Wolf, André, 2013. "Short-term forecasting with business surveys: Evidence for German IHK data at federal state level," HWWI Research Papers 140, Hamburg Institute of International Economics (HWWI).
    6. Proietti, Tommaso, 2003. "Forecasting the US unemployment rate," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 451-476, March.
    7. Huang, Tao & Fildes, Robert & Soopramanien, Didier, 2019. "Forecasting retailer product sales in the presence of structural change," European Journal of Operational Research, Elsevier, vol. 279(2), pages 459-470.
    8. Manolis G. Kavussanos & Ilias D. Visvikis, 2011. "The Predictability of Non-Overlapping Forecasts: Evidence from a New Market," Multinational Finance Journal, Multinational Finance Journal, vol. 15(1-2), pages 125-156, March - J.
    9. Baffigi, Alberto & Golinelli, Roberto & Parigi, Giuseppe, 2004. "Bridge models to forecast the euro area GDP," International Journal of Forecasting, Elsevier, vol. 20(3), pages 447-460.
    10. Rosa Drift & Jan Haan & Peter Boelhouwer, 2024. "Forecasting House Prices through Credit Conditions: A Bayesian Approach," Computational Economics, Springer;Society for Computational Economics, vol. 64(6), pages 3381-3405, December.
    11. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
    12. Emilio Zanetti Chini, 2013. "Generalizing smooth transition autoregressions," CREATES Research Papers 2013-32, Department of Economics and Business Economics, Aarhus University.
    13. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    14. Wang, Lu & Wu, Jiangbin & Cao, Yang & Hong, Yanran, 2022. "Forecasting renewable energy stock volatility using short and long-term Markov switching GARCH-MIDAS models: Either, neither or both?," Energy Economics, Elsevier, vol. 111(C).
    15. Manolis Kavussanos & Nikos Nomikos, 2003. "Price Discovery, Causality and Forecasting in the Freight Futures Market," Review of Derivatives Research, Springer, vol. 6(3), pages 203-230, October.
    16. Araujo, Gustavo Silva & Gaglianone, Wagner Piazza, 2023. "Machine learning methods for inflation forecasting in Brazil: New contenders versus classical models," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(2).
    17. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    18. Thomakos, Dimitrios D. & Guerard, John Jr., 2004. "Naive, ARIMA, nonparametric, transfer function and VAR models: A comparison of forecasting performance," International Journal of Forecasting, Elsevier, vol. 20(1), pages 53-67.
    19. Kelly Burns & Imad Moosa, 2017. "Demystifying the Meese–Rogoff puzzle: structural breaks or measures of forecasting accuracy?," Applied Economics, Taylor & Francis Journals, vol. 49(48), pages 4897-4910, October.
    20. Gianna Boero & Emanuela Marrocu, 2005. "Evaluating non-linear models on point and interval forecasts: an application with exchange rates," BNL Quarterly Review, Banca Nazionale del Lavoro, vol. 58(232), pages 91-120.

    More about this item

    Keywords

    Spain; Germany; Netherlands; Sweeden; Belgium.; Modeling: new developments; Forecasting; nowcasting;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ekd:008007:8669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Theresa Leary (email available below). General contact details of provider: https://edirc.repec.org/data/ecomoea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.