IDEAS home Printed from https://ideas.repec.org/p/ehu/ikerla/6490.html
   My bibliography  Save this paper

Admissible Hierachic Sets

Author

Listed:
  • Iñarra García, María Elena
  • Larrea Jaurrieta, María Concepción

Abstract

In this paper we present a solution concept for abstract systems called the admissible hierarchic set. The solution we propose is a refinement of the hierarchic solution, a generalization of the von Neumann and Morgenstern solution. For finite abstract systems we show that the admissible hierarchic sets and the von Neumann and Morgenstern stable sets are the only outcomes of a coalition formation procedure (Wilson, 1972 and Roth, 1984). For coalitional games we prove that the core is either a vN&M stable set or an admissible hierarchic set.

Suggested Citation

  • Iñarra García, María Elena & Larrea Jaurrieta, María Concepción, 2005. "Admissible Hierachic Sets," IKERLANAK info:eu-repo/grantAgreeme, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
  • Handle: RePEc:ehu:ikerla:6490
    as

    Download full text from publisher

    File URL: https://addi.ehu.es/handle/10810/6490
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alvin E. Roth, 1976. "Subsolutions and the Supercore of Cooperative Games," Mathematics of Operations Research, INFORMS, vol. 1(1), pages 43-49, February.
    2. Robert Delver & Herman Monsuur, 2001. "Stable sets and standards of behaviour," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 18(3), pages 555-570.
    3. Lucas, William F., 1992. "Von Neumann-Morgenstern stable sets," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 1, chapter 17, pages 543-590, Elsevier.
    4. Daniel G. Arce M., 1994. "Stability Criteria for Social Norms with Applications to the Prisoner's Dilemma," Journal of Conflict Resolution, Peace Science Society (International), vol. 38(4), pages 749-765, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Inarra, Elena & Concepcion Larrea, M. & Saracho, Ana I., 2007. "The supercore for normal-form games," Journal of Economic Theory, Elsevier, vol. 132(1), pages 530-538, January.
      • Iñarra García, María Elena & Larrea Jaurrieta, María Concepción & Saracho de la Torre, Ana Isabel, 2003. "The Supercore for Normal Form Games," IKERLANAK info:eu-repo/grantAgreeme, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    2. Luo, Xiao, 2001. "General systems and [phiv]-stable sets -- a formal analysis of socioeconomic environments," Journal of Mathematical Economics, Elsevier, vol. 36(2), pages 95-109, November.
    3. Iñarra García, María Elena & Larrea Jaurrieta, María Concepción, 2005. "Admissible Hierachic Sets," IKERLANAK 2005-18, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    4. Jung, Hanjoon Michael, 2009. "Spatial pillage game," Journal of Mathematical Economics, Elsevier, vol. 45(11), pages 701-707, December.
    5. Atay, Ata & Núñez, Marina, 2019. "A note on the relationship between the core and stable sets in three-sided markets," Mathematical Social Sciences, Elsevier, vol. 98(C), pages 10-14.
    6. Rowat, Colin & Kerber, Manfred, 2014. "Sufficient conditions for unique stable sets in three agent pillage games," Mathematical Social Sciences, Elsevier, vol. 69(C), pages 69-80.
    7. Weibin Han & Adrian Deemen & D. Ary A. Samsura, 2016. "A note on extended stable sets," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 47(2), pages 265-275, August.
    8. Jordan, J.S., 2006. "Pillage and property," Journal of Economic Theory, Elsevier, vol. 131(1), pages 26-44, November.
    9. Inarra, Elena & Larrea, Concepcion, 2007. "A characterization of path dependent modes of behavior," Mathematical Social Sciences, Elsevier, vol. 54(2), pages 128-136, September.
    10. Manfred Kerber & Colin Rowat, 2009. "Stable Sets in Three Agent Pillage Games," Discussion Papers 09-07, Department of Economics, University of Birmingham.
    11. Iñarra García, María Elena & Larrea Jaurrieta, María Concepción & Saracho de la Torre, Ana Isabel, 2003. "The Supercore for Normal Form Games," IKERLANAK 2003-04, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    12. Talamàs, Eduard, 2018. "Fair stable sets of simple games," Games and Economic Behavior, Elsevier, vol. 108(C), pages 574-584.
    13. J.S. Jordan & David Obadia, 2015. "Stable sets in majority pillage games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(2), pages 473-486, May.
    14. Han, Weibin & Van Deemen, Adrian, 2016. "On the solution of w-stable sets," Mathematical Social Sciences, Elsevier, vol. 84(C), pages 87-92.
    15. Thomas Demuynck & P. Jean‐Jacques Herings & Riccardo D. Saulle & Christian Seel, 2019. "The Myopic Stable Set for Social Environments," Econometrica, Econometric Society, vol. 87(1), pages 111-138, January.
    16. Lars Ehlers & Thayer Morrill, 2020. "(Il)legal Assignments in School Choice," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 87(4), pages 1837-1875.
    17. Nunnari, Salvatore, 2021. "Dynamic legislative bargaining with veto power: Theory and experiments," Games and Economic Behavior, Elsevier, vol. 126(C), pages 186-230.
    18. Jinpeng Ma, 1998. "Strategic Formation of Coalitions," Departmental Working Papers 199810, Rutgers University, Department of Economics.
    19. Ray, Debraj & Vohra, Rajiv, 2015. "Coalition Formation," Handbook of Game Theory with Economic Applications,, Elsevier.
    20. Iñarra, E. & Larrea, C. & Molis, E., 2013. "Absorbing sets in roommate problems," Games and Economic Behavior, Elsevier, vol. 81(C), pages 165-178.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehu:ikerla:6490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alcira Macías Redondo (email available below). General contact details of provider: https://edirc.repec.org/data/f1ehues.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.