IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/62182.html
   My bibliography  Save this paper

Random rotation ensembles

Author

Listed:
  • Blaser, Rico
  • Fryzlewicz, Piotr

Abstract

In machine learning, ensemble methods combine the predictions of multiple base learners to construct more accurate aggregate predictions. Established supervised learning algorithms inject randomness into the construction of the individual base learners in an effort to promote diversity within the resulting ensembles. An undesirable side effect of this approach is that it generally also reduces the accuracy of the base learners. In this paper, we introduce a method that is simple to implement yet general and effective in improving ensemble diversity with only modest impact on the accuracy of the individual base learners. By randomly rotating the feature space prior to inducing the base learners, we achieve favorable aggregate predictions on standard data sets compared to state of the art ensemble methods, most notably for tree-based ensembles, which are particularly sensitive to rotation.

Suggested Citation

  • Blaser, Rico & Fryzlewicz, Piotr, 2016. "Random rotation ensembles," LSE Research Online Documents on Economics 62182, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:62182
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/62182/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. K.W. de Bock & D. van den Poel, 2011. "An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction," Post-Print hal-00800160, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mochen Yang & Edward McFowland & Gordon Burtch & Gediminas Adomavicius, 2022. "Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem," INFORMS Joural on Data Science, INFORMS, vol. 1(2), pages 138-155, October.
    2. Timothy I. Cannings & Richard J. Samworth, 2017. "Random-projection ensemble classification," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 959-1035, September.
    3. Anna Kasperczuk & Agnieszka Dardzinska, 2019. "Differentiating Crohn's Disease from Ulcerative Colitis - New Factors," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 18(4), pages 13830-13836, June.
    4. Maia, Mateus & Murphy, Keefe & Parnell, Andrew C., 2024. "GP-BART: A novel Bayesian additive regression trees approach using Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
    5. Dimitris Mylonas & Serge Caparos & Jules Davidoff, 2022. "Augmenting a colour lexicon," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-12, December.
    6. Jianan Zhu & Yang Feng, 2021. "Super RaSE: Super Random Subspace Ensemble Classification," JRFM, MDPI, vol. 14(12), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
    2. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    3. Soyoung Park & Se-Yeong Hamm & Jinsoo Kim, 2019. "Performance Evaluation of the GIS-Based Data-Mining Techniques Decision Tree, Random Forest, and Rotation Forest for Landslide Susceptibility Modeling," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
    4. K. W. De Bock & D. Van Den Poel, 2012. "Reconciling Performance and Interpretability in Customer Churn Prediction using Ensemble Learning based on Generalized Additive Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/805, Ghent University, Faculty of Economics and Business Administration.
    5. Matthias Bogaert & Michel Ballings & Martijn Hosten & Dirk Van den Poel, 2017. "Identifying Soccer Players on Facebook Through Predictive Analytics," Decision Analysis, INFORMS, vol. 14(4), pages 274-297, December.
    6. Liu, Zhenkun & Jiang, Ping & De Bock, Koen W. & Wang, Jianzhou & Zhang, Lifang & Niu, Xinsong, 2024. "Extreme gradient boosting trees with efficient Bayesian optimization for profit-driven customer churn prediction," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    7. Amin, Adnan & Al-Obeidat, Feras & Shah, Babar & Adnan, Awais & Loo, Jonathan & Anwar, Sajid, 2019. "Customer churn prediction in telecommunication industry using data certainty," Journal of Business Research, Elsevier, vol. 94(C), pages 290-301.
    8. Rudzītis Normunds & Čevers Aldis, 2015. "Development of Customs Fiscal Function in Latvia," Acta Universitatis Sapientiae, Economics and Business, Sciendo, vol. 27(1), pages 23-28, December.
    9. M. Ballings & D. Van Den Poel, 2012. "The Relevant Length of Customer Event History for Churn Prediction: How long is long enough?," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/804, Ghent University, Faculty of Economics and Business Administration.
    10. Muhammad Azeem & Muhammad Usman & A. C. M. Fong, 2017. "A churn prediction model for prepaid customers in telecom using fuzzy classifiers," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 66(4), pages 603-614, December.
    11. Aimée Backiel & Bart Baesens & Gerda Claeskens, 2016. "Predicting time-to-churn of prepaid mobile telephone customers using social network analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(9), pages 1135-1145, September.
    12. Ballings, Michel & Van den Poel, Dirk, 2015. "CRM in social media: Predicting increases in Facebook usage frequency," European Journal of Operational Research, Elsevier, vol. 244(1), pages 248-260.
    13. Schaeffer, Satu Elisa & Rodriguez Sanchez, Sara Veronica, 2020. "Forecasting client retention — A machine-learning approach," Journal of Retailing and Consumer Services, Elsevier, vol. 52(C).

    More about this item

    Keywords

    Feature rotation; ensemble diversity; smooth decision boundary;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:62182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.