IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/53692.html
   My bibliography  Save this paper

The estimation of misspecified long memory models

Author

Listed:
  • Robinson, Peter M.

Abstract

We consider time series that, possibly after integer differencing or integrating or other detrending, are covariance stationary with spectral density that is regularly varying near zero frequency, and unspecified elsewhere. This semiparametric framework includes series with short, long and negative memory. We consider the consistency of the popular log-periodogram memory estimate that, conventionally but wrongly, assumes the spectral density obeys a pure power law. The local-to zero misspecification leads to increased bias, such that the usual central limit theorem may only hold for bandwidths entailing considerable imprecision. The order of the bias is calculated for several slowly-varying factors, and some discussion of mean squared error and bandwidth choice is included.

Suggested Citation

  • Robinson, Peter M., 2014. "The estimation of misspecified long memory models," LSE Research Online Documents on Economics 53692, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:53692
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/53692/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Clifford M. Hurvich & Rohit Deo & Julia Brodsky, 1998. "The mean squared error of Geweke and Porter‐Hudak's estimator of the memory parameter of a long‐memory time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(1), pages 19-46, January.
    2. Velasco, Carlos, 1999. "Non-stationary log-periodogram regression," Journal of Econometrics, Elsevier, vol. 91(2), pages 325-371, August.
    3. Liudas Giraitis & Peter M. Robinson & Alexander Samarov, 1997. "Rate Optimal Semiparametric Estimation Of The Memory Parameter Of The Gaussian Time Series With Long‐Range Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 18(1), pages 49-60, January.
    4. Liudas Giraitis & Peter M Robinson & Alexander Samarov, 1997. "Rate Optimal Semiparametric Estimation of the Memory Parameter of the Gaussian Time Serieswith Long-Range Dependence - (Now published in 'Journal of Time Series Analysis', 18 (1997), pp.49-60.)," STICERD - Econometrics Paper Series 323, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin, Gael M. & Nadarajah, K. & Poskitt, D.S., 2020. "Issues in the estimation of mis-specified models of fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 215(2), pages 559-573.
    2. Annika Betken, 2016. "Testing for Change-Points in Long-Range Dependent Time Series by Means of a Self-Normalized Wilcoxon Test," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(6), pages 785-809, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    2. Robinson, Peter M., 2014. "The estimation of misspecified long memory models," Journal of Econometrics, Elsevier, vol. 178(P2), pages 225-230.
    3. Feng, Yuanhua & Beran, Jan, 2008. "Filtered Log-periodogram Regression of long memory processes," CoFE Discussion Papers 08/10, University of Konstanz, Center of Finance and Econometrics (CoFE).
    4. D.S. Poskitt & Gael M. Martin & Simone D. Grose, 2012. "Bias Reduction of Long Memory Parameter Estimators via the Pre-filtered Sieve Bootstrap," Monash Econometrics and Business Statistics Working Papers 8/12, Monash University, Department of Econometrics and Business Statistics.
    5. Giraitis, Liudas & Robinson, Peter M. & Samarov, Alexander, 2000. "Adaptive Semiparametric Estimation of the Memory Parameter," Journal of Multivariate Analysis, Elsevier, vol. 72(2), pages 183-207, February.
    6. Michelacci, Claudio, 2004. "Cross-sectional heterogeneity and the persistence of aggregate fluctuations," Journal of Monetary Economics, Elsevier, vol. 51(7), pages 1321-1352, October.
    7. Hurvich, Clifford M. & Moulines, Eric & Soulier, Philippe, 2002. "The FEXP estimator for potentially non-stationary linear time series," Stochastic Processes and their Applications, Elsevier, vol. 97(2), pages 307-340, February.
    8. Hassler, U. & Marmol, F. & Velasco, C., 2006. "Residual log-periodogram inference for long-run relationships," Journal of Econometrics, Elsevier, vol. 130(1), pages 165-207, January.
    9. Chang Sik Kim & Peter C.B. Phillips, 2006. "Log Periodogram Regression: The Nonstationary Case," Cowles Foundation Discussion Papers 1587, Cowles Foundation for Research in Economics, Yale University.
    10. Arteche, J., 2006. "Semiparametric estimation in perturbed long memory series," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2118-2141, December.
    11. Adam McCloskey, 2013. "Estimation of the long-memory stochastic volatility model parameters that is robust to level shifts and deterministic trends," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 285-301, May.
    12. Mccloskey, Adam & Perron, Pierre, 2013. "Memory Parameter Estimation In The Presence Of Level Shifts And Deterministic Trends," Econometric Theory, Cambridge University Press, vol. 29(6), pages 1196-1237, December.
    13. Liudas Giraitis & Peter M Robinson, 2002. "Edgeworth Expansions for Semiparametric Whittle Estimation of Long Memory," STICERD - Econometrics Paper Series 438, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    14. Giraitis, L. & Robinson, P.M., 2003. "Edgeworth expansions for semiparametric Whittle estimation of long memory," LSE Research Online Documents on Economics 291, London School of Economics and Political Science, LSE Library.
    15. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    16. Peter C. B. Phillips, 2023. "Discrete Fourier Transforms of Fractional Processes with Econometric Applications," Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Theory, volume 45, pages 3-71, Emerald Group Publishing Limited.
    17. J. Eduardo Vera-Valdés, 2021. "Temperature Anomalies, Long Memory, and Aggregation," Econometrics, MDPI, vol. 9(1), pages 1-22, March.
    18. J. Arteche, 2012. "Semiparametric Inference in Correlated Long Memory Signal Plus Noise Models," Econometric Reviews, Taylor & Francis Journals, vol. 31(4), pages 440-474.
    19. Henryk Gurgul & Tomasz Wójtowicz, 2006. "Long-run properties of trading volume and volatility of equities listed in DJIA index," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 16(3-4), pages 29-56.
    20. Claudio Michelacci, 1999. "Cross-Sectional Heterogeneity and the Persistence of Aggregate Fluctuations," Working Papers wp1999_9906, CEMFI.

    More about this item

    Keywords

    long memory; slowly-varying function; log-periodogram estimate;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:53692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.