Determining the number of factors in high-dimensional generalized latent factor models
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Geneviève Robin & Olga Klopp & Julie Josse & Éric Moulines & Robert Tibshirani, 2020. "Main Effects and Interactions in Mixed and Incomplete Data Frames," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1292-1303, July.
- In Choi & Hanbat Jeong, 2019.
"Model selection for factor analysis: Some new criteria and performance comparisons,"
Econometric Reviews, Taylor & Francis Journals, vol. 38(6), pages 577-596, July.
- In Choi, 2012. "Model Selection for Factor Analysis: Some New Criteria and Performance Comparisons," Working Papers 1209, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
- Jushan Bai & Serena Ng, 2002.
"Determining the Number of Factors in Approximate Factor Models,"
Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
- R. Bock & Murray Aitkin, 1981. "Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 443-459, December.
- John Horn, 1965. "A rationale and test for the number of factors in factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 30(2), pages 179-185, June.
- Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
- Philippe Huber & Elvezio Ronchetti & Maria‐Pia Victoria‐Feser, 2004. "Estimation of generalized linear latent variable models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 893-908, November.
- Robin, Geneviève & Josse, Julie & Moulines, Éric & Sardy, Sylvain, 2019. "Low-rank model with covariates for count data with missing values," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 416-434.
- Yunzhang Zhu & Xiaotong Shen & Changqing Ye, 2016. "Personalized Prediction and Sparsity Pursuit in Latent Factor Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 241-252, March.
- Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
- Yunxiao Chen & Xiaoou Li & Siliang Zhang, 2019. "Joint Maximum Likelihood Estimation for High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 124-146, March.
- Wedel, Michel & Böckenholt, Ulf & Kamakura, Wagner A., 2003. "Factor models for multivariate count data," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 356-369, November.
- Yunxiao Chen & Xiaoou Li & Siliang Zhang, 2020. "Structured Latent Factor Analysis for Large-scale Data: Identifiability, Estimability, and Their Implications," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1756-1770, December.
- Edgar Dobriban & Art B. Owen, 2019. "Deterministic parallel analysis: an improved method for selecting factors and principal components," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(1), pages 163-183, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xinyi Liu & Gabriel Wallin & Yunxiao Chen & Irini Moustaki, 2023. "Rotation to Sparse Loadings Using $$L^p$$ L p Losses and Related Inference Problems," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 527-553, June.
- Liu, Xinyi Lin & Wallin, Gabriel & Chen, Yunxiao & Moustaki, Irini, 2023. "Rotation to sparse loadings using Lp losses and related inference problems," LSE Research Online Documents on Economics 118349, London School of Economics and Political Science, LSE Library.
- Chen, Yunxiao & Li, Xiaoou, 2024. "A note on entrywise consistency for mixed-data matrix completion," LSE Research Online Documents on Economics 124682, London School of Economics and Political Science, LSE Library.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Y Chen & X Li, 2022. "Determining the number of factors in high-dimensional generalized latent factor models [Eigenvalue ratio test for the number of factors]," Biometrika, Biometrika Trust, vol. 109(3), pages 769-782.
- Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021.
"Factor extraction using Kalman filter and smoothing: This is not just another survey,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
- Poncela Blanco, Maria Pilar, 2020. "Factor extraction using Kalman filter and smoothing: this is not just another survey," DES - Working Papers. Statistics and Econometrics. WS 30644, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Alexander Chudik & M. Hashem Pesaran, 2013.
"Large panel data models with cross-sectional dependence: a survey,"
Globalization Institute Working Papers
153, Federal Reserve Bank of Dallas.
- Alexander Chudik & M. Hashem Pesaran, 2013. "Large Panel Data Models with Cross-Sectional Dependence: A Survey," CESifo Working Paper Series 4371, CESifo.
- Zhao Zhao & Guowei Cui & Shaoping Wang, 2017. "A Monte Carlo comparison of estimating the number of dynamic factors," Empirical Economics, Springer, vol. 53(3), pages 1217-1241, November.
- Zhonghui Zhang & Huarui Jing & Chihwa Kao, 2023. "High-Dimensional Distributionally Robust Mean-Variance Efficient Portfolio Selection," Mathematics, MDPI, vol. 11(5), pages 1-16, March.
- Guo, Xiao & Chen, Yu & Tang, Cheng Yong, 2023. "Information criteria for latent factor models: A study on factor pervasiveness and adaptivity," Journal of Econometrics, Elsevier, vol. 233(1), pages 237-250.
- Choi, In & Lin, Rui & Shin, Yongcheol, 2023.
"Canonical correlation-based model selection for the multilevel factors,"
Journal of Econometrics, Elsevier, vol. 233(1), pages 22-44.
- In Choi & Rui Lin & Yongcheol Shin, 2020. "Canonical Correlation-based Model Selection for the Multilevel Factors," Working Papers 2008, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
- GUO-FITOUSSI, Liang, 2013. "A Comparison of the Finite Sample Properties of Selection Rules of Factor Numbers in Large Datasets," MPRA Paper 50005, University Library of Munich, Germany.
- Alain-Philippe Fortin & Patrick Gagliardini & O. Scaillet, 2022.
"Eigenvalue tests for the number of latent factors in short panels,"
Swiss Finance Institute Research Paper Series
22-81, Swiss Finance Institute.
- Alain-Philippe Fortin & Patrick Gagliardini & Olivier Scaillet, 2022. "Eigenvalue tests for the number of latent factors in short panels," Papers 2210.16042, arXiv.org.
- Wei, Jie & Chen, Hui, 2020. "Determining the number of factors in approximate factor models by twice K-fold cross validation," Economics Letters, Elsevier, vol. 191(C).
- Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015.
"Risks of large portfolios,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
- Jianqing Fan & Yuan Liao & Xiaofeng Shi, 2013. "Risks of Large Portfolios," Papers 1302.0926, arXiv.org.
- Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2013. "Risks of large portfolios," MPRA Paper 44206, University Library of Munich, Germany.
- Luke Hartigan & James Morley, 2020.
"A Factor Model Analysis of the Australian Economy and the Effects of Inflation Targeting,"
The Economic Record, The Economic Society of Australia, vol. 96(314), pages 271-293, September.
- Hartigan, Luke & Morley, James, 2019. "A Factor Model Analysis of the Australian Economy and the Effects of Inflation Targeting," Working Papers 2019-10, University of Sydney, School of Economics, revised Nov 2019.
- Yongfu Huang & Muhammad G. Quibria, 2015.
"The global partnership for sustainable development,"
Natural Resources Forum,
Blackwell Publishing, vol. 0(3-4), pages 157-174, August.
- Huang, Yongfu & Quibria, M. G., 2013. "The Global Partnership for Sustainable Development," WIDER Working Paper Series 057, World Institute for Development Economic Research (UNU-WIDER).
- Hyungsik Roger Moon & Martin Weidner, 2015.
"Linear Regression for Panel With Unknown Number of Factors as Interactive Fixed Effects,"
Econometrica, Econometric Society, vol. 83(4), pages 1543-1579, July.
- Hyungsik Roger Moon & Martin Weidner, 2013. "Linear regression for panel with unknown number of factors as interactive fixed effects," CeMMAP working papers CWP49/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hyungsik Roger Moon & Martin Weidner, 2014. "Linear regression for panel with unknown number of factors as interactive fixed effects," CeMMAP working papers CWP35/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Venetis, Ioannis & Ladas, Avgoustinos, 2022. "Co-movement and global factors in sovereign bond yields," MPRA Paper 115801, University Library of Munich, Germany.
- Matteo Barigozzi & Marc Hallin, 2023.
"Dynamic Factor Models: a Genealogy,"
Papers
2310.17278, arXiv.org, revised Jan 2024.
- Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Working Papers ECARES 2023-15, ULB -- Universite Libre de Bruxelles.
- Zhang, Yixiao & Yu, Cindy L. & Li, Haitao, 2022. "Nowcasting GDP Using Dynamic Factor Model with Unknown Number of Factors and Stochastic Volatility: A Bayesian Approach," Econometrics and Statistics, Elsevier, vol. 24(C), pages 75-93.
- Ryan Greenaway‐McGrevy & Nelson C. Mark & Donggyu Sul & Jyh‐Lin Wu, 2018.
"Identifying Exchange Rate Common Factors,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(4), pages 2193-2218, November.
- Ryan Greenaway-McGrevy & Donggyu Sul & Nelson Mark & Jyh-Lin Wu, 2017. "Identifying Exchange Rate Common Factors," NBER Working Papers 23726, National Bureau of Economic Research, Inc.
- Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019.
"A diagnostic criterion for approximate factor structure,"
Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
- Patrick Gagliardini & Elisa Ossola & Olivier Scaillet, 2016. "A diagnostic criterion for approximate factor structure," Papers 1612.04990, arXiv.org, revised Aug 2017.
- Patrick Gagliardini & Elisa Ossola & O. Scaillet, 2016. "A Diagnostic Criterion for Approximate Factor Structure," Swiss Finance Institute Research Paper Series 16-51, Swiss Finance Institute, revised Dec 2016.
- Xu Cheng & Zhipeng Liao & Frank Schorfheide, 2016.
"Shrinkage Estimation of High-Dimensional Factor Models with Structural Instabilities,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 83(4), pages 1511-1543.
- Xu Cheng & Zhipeng Liao & Frank Schorfheide, 2013. "Shrinkage estimation of high-dimensional factor models with structural instabilities," Working Papers 14-4, Federal Reserve Bank of Philadelphia.
- Xu Cheng & Zhipeng Liao & Frank Schorfheide, 2014. "Shrinkage Estimation of High-Dimensional Factor Models with Structural Instabilities," NBER Working Papers 19792, National Bureau of Economic Research, Inc.
More about this item
Keywords
generalized latent factor model; joint maximum likelihood estimator; high-dimensional data; information criteria; selection consistency;All these keywords.
JEL classification:
- C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2022-02-21 (Econometrics)
- NEP-ETS-2022-02-21 (Econometric Time Series)
- NEP-ORE-2022-02-21 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:111574. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.