Asymptotic theory of principal component analysis for time series data with cautionary comments
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
- Giraitis, Liudas & Robinson, Peter M., 2001. "Whittle Estimation Of Arch Models," Econometric Theory, Cambridge University Press, vol. 17(3), pages 608-631, June.
- Taniguchi, M. & Krishnaiah, P. R., 1987. "Asymptotic distributions of functions of the eigenvalues of sample covariance matrix and canonical correlation matrix in multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 22(1), pages 156-176, June.
- repec:ebl:ecbull:v:7:y:2004:i:3:p:1-10 is not listed on IDEAS
- Xiaofeng Shao, 2009. "Confidence intervals for spectral mean and ratio statistics," Biometrika, Biometrika Trust, vol. 96(1), pages 107-117.
- Giraitis, Liudas & Robinson, Peter M., 2001. "Whittle estimation of ARCH models," LSE Research Online Documents on Economics 316, London School of Economics and Political Science, LSE Library.
- B. Ahamad, 1967. "An Analysis of Crimes by the Method of Principal Components," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 16(1), pages 17-35, March.
- M. Hossein Partovi & Michael Caputo, 2004. "Principal Portfolios: Recasting the Efficient Frontier," Economics Bulletin, AccessEcon, vol. 7(3), pages 1-10.
- Taniguchi, Masanobu & Puri, Madan L. & Kondo, Masao, 1996. "Nonparametric Approach for Non-Gaussian Vector Stationary Processes," Journal of Multivariate Analysis, Elsevier, vol. 56(2), pages 259-283, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Thu K. Hoang & Klarizze Anne Martin Puzon & Hoai Thi Thu Dang & Rachel M. Gisselquist, 2024. "Inequality and institutional outcomes in Viet Nam: A combined principal components and clustering analysis," WIDER Working Paper Series wp-2024-38, World Institute for Development Economic Research (UNU-WIDER).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xinyu Zhang & Howell Tong, 2022. "Asymptotic theory of principal component analysis for time series data with cautionary comments," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(2), pages 543-565, April.
- Diongue Abdou Ka & Dominique Guegan, 2008. "Estimation of k-Factor Gigarch Process: A Monte Carlo Study," Post-Print halshs-00375758, HAL.
- Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
- Peter M Robinson & Paolo Zaffaroni, 2005. "Pseudo-Maximum Likelihood Estimation of ARCH(8) Models," STICERD - Econometrics Paper Series 495, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Abdou Kâ Diongue & Dominique Guegan, 2008.
"Estimation of k-factor GIGARCH process : a Monte Carlo study,"
Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers)
halshs-00235179, HAL.
- Abdou Kâ Diongue & Dominique Guegan, 2008. "Estimation of k-factor GIGARCH process : a Monte Carlo study," Post-Print halshs-00235179, HAL.
- Abdou Kâ Diongue & Dominique Guegan, 2008. "Estimation of k-factor GIGARCH process: a Monte Carlo study," Documents de travail du Centre d'Economie de la Sorbonne b08004, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
- Diongue Abdou Ka & Dominique Guegan, 2008. "Estimation of k-Factor Gigarch Process: A Monte Carlo Study," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00375758, HAL.
- Diongue Abdou Ka & Dominique Guegan, 2008. "Estimation of k-Factor Gigarch Process: A Monte Carlo Study," PSE-Ecole d'économie de Paris (Postprint) halshs-00375758, HAL.
- Wei, Honglei & Zhang, Hongfan & Jiang, Hui & Huang, Lei, 2022. "On the semi-varying coefficient dynamic panel data model with autocorrelated errors," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
- Robinson, Peter M. & Zaffaroni, Paolo, 2005. "Pseudo-maximum likelihood estimation of ARCH(∞) models," LSE Research Online Documents on Economics 58182, London School of Economics and Political Science, LSE Library.
- Giraitis, Liudas & Leipus, Remigijus & Robinson, Peter M. & Surgailis, Donatas, 2003. "LARCH, leverage and long memory," LSE Research Online Documents on Economics 2020, London School of Economics and Political Science, LSE Library.
- Abdou Kâ Diongue & Dominique Guegan, 2004. "Estimating parameters for a k-GIGARCH process," Post-Print halshs-00188531, HAL.
- repec:hum:wpaper:sfb649dp2006-033 is not listed on IDEAS
- Zaffaroni, Paolo, 2009. "Whittle estimation of EGARCH and other exponential volatility models," Journal of Econometrics, Elsevier, vol. 151(2), pages 190-200, August.
- Polzehl, Jörg & Spokoiny, Vladimir, 2006. "Varying coefficient GARCH versus local constant volatility modeling: Comparison of the predictive power," SFB 649 Discussion Papers 2006-033, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Tata Subba Rao & Granville Tunnicliffe Wilson & Joao Jesus & Richard E. Chandler, 2017. "Inference with the Whittle Likelihood: A Tractable Approach Using Estimating Functions," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 204-224, March.
- Todd Prono, 2016. "Closed-Form Estimation of Finite-Order ARCH Models: Asymptotic Theory and Finite-Sample Performance," Finance and Economics Discussion Series 2016-083, Board of Governors of the Federal Reserve System (U.S.).
- Robinson, Peter M. & Zafaroni, Paolo, 2005. "Pseudo-maximum likelihood estimation of ARCH models," LSE Research Online Documents on Economics 4544, London School of Economics and Political Science, LSE Library.
- Xuejie Feng & Chiping Zhang, 2020. "A Perturbation Method to Optimize the Parameters of Autoregressive Conditional Heteroscedasticity Model," Computational Economics, Springer;Society for Computational Economics, vol. 55(3), pages 1021-1044, March.
- Giraitis, Liudas & Leipus, Remigijus & Robinson, Peter M. & Surgailis, Donatas, 2004. "LARCH, leverage, and long memory," LSE Research Online Documents on Economics 294, London School of Economics and Political Science, LSE Library.
- Huang, Da & Wang, Hansheng & Yao, Qiwei, 2008. "Estimating GARCH models: when to use what?," LSE Research Online Documents on Economics 5398, London School of Economics and Political Science, LSE Library.
- Royer, Julien, 2021. "Conditional asymmetry in Power ARCH($\infty$) models," MPRA Paper 109118, University Library of Munich, Germany.
- Liudas Giraitis & Remigijus Leipus & Peter M Robinson & Donatas Surgailis, 2003. "LARCH, Leverage and Long Memory," STICERD - Econometrics Paper Series 460, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Jean-Marc Bardet & Paul Doukhan & José Rafael Leon_, 2005. "Uniform Limit Theorems for the Integrated Periodogram of Weakly Dependent Time Series and their Applications to Whittle's Estimate," Working Papers 2005-46, Center for Research in Economics and Statistics.
More about this item
Keywords
bootstrap; inference; limiting distribution; PCA; portfolio management; time series;All these keywords.
JEL classification:
- C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2023-02-20 (Econometrics)
- NEP-ETS-2023-02-20 (Econometric Time Series)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:113566. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.