IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/110258.html
   My bibliography  Save this paper

Detecting multiple generalized change-points by isolating single ones

Author

Listed:
  • Anastasiou, Andreas
  • Fryzlewicz, Piotr

Abstract

We introduce a new approach, called Isolate-Detect (ID), for the consistent estimation of the number and location of multiple generalized change-points in noisy data sequences. Examples of signal changes that ID can deal with are changes in the mean of a piecewise-constant signal and changes, continuous or not, in the linear trend. The number of change-points can increase with the sample size. Our method is based on an isolation technique, which prevents the consideration of intervals that contain more than one change-point. This isolation enhances ID’s accuracy as it allows for detection in the presence of frequent changes of possibly small magnitudes. In ID, model selection is carried out via thresholding, or an information criterion, or SDLL, or a hybrid involving the former two. The hybrid model selection leads to a general method with very good practical performance and minimal parameter choice. In the scenarios tested, ID is at least as accurate as the state-of-the-art methods; most of the times it outperforms them. ID is implemented in the R packages IDetect and breakfast, available from CRAN.

Suggested Citation

  • Anastasiou, Andreas & Fryzlewicz, Piotr, 2022. "Detecting multiple generalized change-points by isolating single ones," LSE Research Online Documents on Economics 110258, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:110258
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/110258/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    2. Holger Dette & Theresa Eckle & Mathias Vetter, 2020. "Multiscale change point detection for dependent data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1243-1274, December.
    3. Fryzlewicz, Piotr, 2014. "Wild binary segmentation for multiple change-point detection," LSE Research Online Documents on Economics 57146, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maeng, Hyeyoung & Fryzlewicz, Piotr, 2023. "Detecting linear trend changes in data sequences," LSE Research Online Documents on Economics 119280, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Anastasiou & Piotr Fryzlewicz, 2022. "Detecting multiple generalized change-points by isolating single ones," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(2), pages 141-174, February.
    2. Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
    3. Cho, Haeran & Kirch, Claudia, 2022. "Bootstrap confidence intervals for multiple change points based on moving sum procedures," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    4. Casini, Alessandro & Perron, Pierre, 2024. "Change-point analysis of time series with evolutionary spectra," Journal of Econometrics, Elsevier, vol. 242(2).
    5. Florian Pein & Hannes Sieling & Axel Munk, 2017. "Heterogeneous change point inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1207-1227, September.
    6. Kleiber, Christian, 2016. "Structural Change in (Economic) Time Series," Working papers 2016/06, Faculty of Business and Economics - University of Basel.
    7. Haeran Cho & Claudia Kirch, 2022. "Two-stage data segmentation permitting multiscale change points, heavy tails and dependence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 653-684, August.
    8. McGonigle, Euan T. & Cho, Haeran, 2023. "Robust multiscale estimation of time-average variance for time series segmentation," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    9. Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2023. "Testing for changes in linear models using weighted residuals," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    10. Pedro Galeano & Dominik Wied, 2017. "Dating multiple change points in the correlation matrix," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 331-352, June.
    11. Bill Russell & Dooruj Rambaccussing, 2019. "Breaks and the statistical process of inflation: the case of estimating the ‘modern’ long-run Phillips curve," Empirical Economics, Springer, vol. 56(5), pages 1455-1475, May.
    12. Davis, Richard A. & Hancock, Stacey A. & Yao, Yi-Ching, 2016. "On consistency of minimum description length model selection for piecewise autoregressions," Journal of Econometrics, Elsevier, vol. 194(2), pages 360-368.
    13. Jiang, Feiyu & Zhao, Zifeng & Shao, Xiaofeng, 2023. "Time series analysis of COVID-19 infection curve: A change-point perspective," Journal of Econometrics, Elsevier, vol. 232(1), pages 1-17.
    14. David Ardia & Arnaud Dufays & Carlos Ordás Criado, 2024. "Linking Frequentist and Bayesian Change-Point Methods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(4), pages 1155-1168, October.
    15. Cui, Junfeng & Wang, Guanghui & Zou, Changliang & Wang, Zhaojun, 2023. "Change-point testing for parallel data sets with FDR control," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    16. Sean Jewell & Paul Fearnhead & Daniela Witten, 2022. "Testing for a change in mean after changepoint detection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1082-1104, September.
    17. Mohamed Salah Eddine Arrouch & Echarif Elharfaoui & Joseph Ngatchou-Wandji, 2023. "Change-Point Detection in the Volatility of Conditional Heteroscedastic Autoregressive Nonlinear Models," Mathematics, MDPI, vol. 11(18), pages 1-31, September.
    18. Le Floc'h, Pascal & Merzéréaud, Mathieu & Beckensteiner, Jennifer & Alban, Frédérique & Duhamel, Erwan & Thébaud, Olivier & Wilson, James, 2023. "Explaining technical change and its impacts over the very long term: The case of the Atlantic sardine fishery in France from 1900 to 2017," Research Policy, Elsevier, vol. 52(9).
    19. Zifeng Zhao & Feiyu Jiang & Xiaofeng Shao, 2022. "Segmenting time series via self‐normalisation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1699-1725, November.
    20. Alessandro Casini & Pierre Perron, 2018. "Continuous Record Asymptotics for Change-Points Models," Papers 1803.10881, arXiv.org, revised Nov 2021.

    More about this item

    Keywords

    segmentation; symmetric interval expansion; threshold criterion; Schwarz information criterion; SDLL; UKRI fund;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:110258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.