IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/107522.html
   My bibliography  Save this paper

Sample sensitivity for two-step and continuous updating GMM estimators

Author

Listed:
  • Onishi, Rikuto
  • Otsu, Taisuke

Abstract

This paper follows up the sensitivity analysis by Andrews, Gentzkow and Shapiro (2017) for biases in GMM estimators due to local violations of identifying assumptions, and proposes complementary bias measures that are sensitive to different choices of GMM weight matrices by considering a specific form of the local perturbation. Our method accommodates the two-step and continuous updating GMM estimators with or without centering. The proposed bias measures are illustrated by a consumption based asset pricing model using Japanese data.

Suggested Citation

  • Onishi, Rikuto & Otsu, Taisuke, 2021. "Sample sensitivity for two-step and continuous updating GMM estimators," LSE Research Online Documents on Economics 107522, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:107522
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/107522/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hall, Alastair R. & Inoue, Atsushi, 2003. "The large sample behaviour of the generalized method of moments estimator in misspecified models," Journal of Econometrics, Elsevier, vol. 114(2), pages 361-394, June.
    2. Isaiah Andrews & Matthew Gentzkow & Jesse M. Shapiro, 2017. "Measuring the Sensitivity of Parameter Estimates to Estimation Moments," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(4), pages 1553-1592.
    3. Alastair R. Hall, 2000. "Covariance Matrix Estimation and the Power of the Overidentifying Restrictions Test," Econometrica, Econometric Society, vol. 68(6), pages 1517-1528, November.
    4. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    5. Hansen, Lars Peter & Singleton, Kenneth J, 1982. "Generalized Instrumental Variables Estimation of Nonlinear Rational Expectations Models," Econometrica, Econometric Society, vol. 50(5), pages 1269-1286, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Onishi, Rikuto & Otsu, Taisuke, 2021. "Sample sensitivity for two-step and continuous updating GMM estimators," Economics Letters, Elsevier, vol. 198(C).
    2. Hwang, Jungbin & Kang, Byunghoon & Lee, Seojeong, 2022. "A doubly corrected robust variance estimator for linear GMM," Journal of Econometrics, Elsevier, vol. 229(2), pages 276-298.
    3. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    4. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    5. Lewbel, Arthur & Choi, Jin Young & Zhou, Zhuzhu, 2023. "Over-identified Doubly Robust identification and estimation," Journal of Econometrics, Elsevier, vol. 235(1), pages 25-42.
    6. Lee, Seojeong, 2014. "Asymptotic refinements of a misspecification-robust bootstrap for generalized method of moments estimators," Journal of Econometrics, Elsevier, vol. 178(P3), pages 398-413.
    7. A. Felipe & N. Martín & P. Miranda & L. Pardo, 2018. "Testing with Exponentially Tilted Empirical Likelihood," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1319-1358, December.
    8. Florian PELGRIN & Alain GUAY & Richard LUGER, 2004. "The New Keynesian Phillips Curve: An empirical assessment," Econometric Society 2004 North American Summer Meetings 418, Econometric Society.
    9. Chernov, Mikhail, 2003. "Empirical reverse engineering of the pricing kernel," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 329-364.
    10. Bruce E. Hansen & Seojeong Jay Lee, 2018. "Inference for Iterated GMM Under Misspecification and Clustering," Discussion Papers 2018-07, School of Economics, The University of New South Wales.
    11. Prosper Dovonon, 2016. "Large Sample Properties of the Three-Step Euclidean Likelihood Estimators under Model Misspecification," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 465-514, April.
    12. Gregory, Allan W. & Lamarche, Jean-Francois & Smith, Gregor W., 2002. "Information-theoretic estimation of preference parameters: macroeconomic applications and simulation evidence," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 213-233, March.
    13. Chen, Xiaohong & Hansen, Lars Peter & Hansen, Peter G., 2024. "Robust inference for moment condition models without rational expectations," Journal of Econometrics, Elsevier, vol. 243(1).
    14. Bansal, Ravi & Kiku, Dana & Yaron, Amir, 2016. "Risks for the long run: Estimation with time aggregation," Journal of Monetary Economics, Elsevier, vol. 82(C), pages 52-69.
    15. Hansen, Lars Peter, 2013. "Uncertainty Outside and Inside Economic Models," Nobel Prize in Economics documents 2013-7, Nobel Prize Committee.
    16. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    17. Whitney K. Newey & Frank Windmeijer, 2005. "GMM with many weak moment conditions," CeMMAP working papers CWP18/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. Timothy B. Armstrong & Michal Kolesár, 2021. "Sensitivity analysis using approximate moment condition models," Quantitative Economics, Econometric Society, vol. 12(1), pages 77-108, January.
    19. Szafranek, Karol, 2017. "Flattening of the New Keynesian Phillips curve: Evidence for an emerging, small open economy," Economic Modelling, Elsevier, vol. 63(C), pages 334-348.
    20. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    21. Peñaranda, Francisco & Sentana, Enrique, 2012. "Spanning tests in return and stochastic discount factor mean–variance frontiers: A unifying approach," Journal of Econometrics, Elsevier, vol. 170(2), pages 303-324.

    More about this item

    Keywords

    sensitivity analysis; generalized method of moments; misspecification;
    All these keywords.

    JEL classification:

    • J1 - Labor and Demographic Economics - - Demographic Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:107522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.