IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/102136.html
   My bibliography  Save this paper

Regression with I-priors

Author

Listed:
  • Bergsma, Wicher

Abstract

The problem of estimating a parametric or nonparametric regression function in a model with normal errors is considered. For this purpose, a novel objective prior for the regression function is proposed, defined as the distribution maximizing entropy subject to a suitable constraint based on the Fisher information on the regression function. The prior is named I-prior. For the present model, it is Gaussian with covariance kernel proportional to the Fisher information, and mean chosen a priori (e.g., 0). The I-prior has the intuitively appealing property that the more information is available about a linear functional of the regression function, the larger its prior variance, and, broadly speaking, the less influential the prior is on the posterior. Unlike the Jeffreys prior, it can be used in high dimensional settings. The I-prior methodology can be used as a principled alternative to Tikhonov regularization, which suffers from well-known theoretical problems which are briefly reviewed. The regression function is assumed to lie in a reproducing kernel Hilbert space (RKHS) over a low or high dimensional covariate space, giving a high degree of generality. Analysis of some real data sets and a small-scale simulation study show competitive performance of the I-prior methodology, which is implemented in the R-package iprior.

Suggested Citation

  • Bergsma, Wicher, 2020. "Regression with I-priors," LSE Research Online Documents on Economics 102136, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:102136
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/102136/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Timothy I. Cannings & Richard J. Samworth, 2017. "Random-projection ensemble classification," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 959-1035, September.
    2. Hongxiao Zhu & Fang Yao & Hao Helen Zhang, 2014. "Structured functional additive regression in reproducing kernel Hilbert spaces," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(3), pages 581-603, June.
    3. Lian, Heng & Li, Gaorong, 2014. "Series expansion for functional sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 150-165.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bergsma, Wicher P, 2020. "Regression with I-priors," Econometrics and Statistics, Elsevier, vol. 14(C), pages 89-111.
    2. Huang, Lele & Zhao, Junlong & Wang, Huiwen & Wang, Siyang, 2016. "Robust shrinkage estimation and selection for functional multiple linear model through LAD loss," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 384-400.
    3. Allam, Abdelaziz & Mourid, Tahar, 2019. "Optimal rate for covariance operator estimators of functional autoregressive processes with random coefficients," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 130-137.
    4. Fuli Zhang & Kung‐Sik Chan, 2023. "Random projection ensemble classification with high‐dimensional time series," Biometrics, The International Biometric Society, vol. 79(2), pages 964-974, June.
    5. Yuping Hu & Siyu Wu & Sanying Feng & Junliang Jin, 2020. "Estimation in Partial Functional Linear Spatial Autoregressive Model," Mathematics, MDPI, vol. 8(10), pages 1-12, October.
    6. Jiang, Qing & Hušková, Marie & Meintanis, Simos G. & Zhu, Lixing, 2019. "Asymptotics, finite-sample comparisons and applications for two-sample tests with functional data," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 202-220.
    7. Zardad Khan & Asma Gul & Aris Perperoglou & Miftahuddin Miftahuddin & Osama Mahmoud & Werner Adler & Berthold Lausen, 2020. "Ensemble of optimal trees, random forest and random projection ensemble classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(1), pages 97-116, March.
    8. Xu, Jianjun & Cui, Wenquan, 2022. "A new RKHS-based global testing for functional linear model," Statistics & Probability Letters, Elsevier, vol. 182(C).
    9. Maeng, Hye Young & Fryzlewicz, Piotr, 2019. "Regularised forecasting via smooth-rough partitioning of the regression coefficients," LSE Research Online Documents on Economics 100878, London School of Economics and Political Science, LSE Library.
    10. Wong, Raymond K.W. & Zhang, Xiaoke, 2019. "Nonparametric operator-regularized covariance function estimation for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 131-144.
    11. Lin, Hongmei & Jiang, Xuejun & Lian, Heng & Zhang, Weiping, 2019. "Reduced rank modeling for functional regression with functional responses," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 205-217.
    12. Linjuan Zheng & Beiting Liang & Guochang Wang, 2024. "Adaptive slicing for functional slice inverse regression," Statistical Papers, Springer, vol. 65(5), pages 3261-3284, July.
    13. Yatracos, Yannis G., 2018. "Residual'S Influence Index (Rinfin), Bad Leverage And Unmasking In High Dimensional L2-Regression," IRTG 1792 Discussion Papers 2018-060, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    14. Jadhav, Sneha & Ma, Shuangge, 2021. "An association test for functional data based on Kendall’s Tau," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    15. Guochang Wang & Zengyao Wen & Shanming Jia & Shanshan Liang, 2024. "Supervised dimension reduction for functional time series," Statistical Papers, Springer, vol. 65(7), pages 4057-4077, September.
    16. Wu, Ruiyang & Hao, Ning, 2022. "Quadratic discriminant analysis by projection," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    17. Yuzhu Tian & Hongmei Lin & Heng Lian & Zengyan Fan, 2021. "Additive functional regression in reproducing kernel Hilbert spaces under smoothness condition," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 429-442, April.
    18. Laura Anderlucci & Francesca Fortunato & Angela Montanari, 2022. "High-Dimensional Clustering via Random Projections," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 191-216, March.
    19. Lili Xia & Tingyu Lai & Zhongzhan Zhang, 2023. "An Adaptive-to-Model Test for Parametric Functional Single-Index Model," Mathematics, MDPI, vol. 11(8), pages 1-25, April.
    20. Yu-Ru Su & Chong-Zhi Di & Li Hsu, 2017. "Hypothesis testing in functional linear models," Biometrics, The International Biometric Society, vol. 73(2), pages 551-561, June.

    More about this item

    Keywords

    reproducing kernel; RKHS; fisher information; maximum entropy; objective prior; g-prior; empirical Bates; regression; nonparametric regression; functional data analysis; classification; Tikhonov regularization;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:102136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.