IDEAS home Printed from https://ideas.repec.org/p/een/eenhrr/0930.html
   My bibliography  Save this paper

The future of renewable electricity in Australia

Author

Listed:
  • Greg Buckman

    (Fenner School of Environment and Society, The Australian National University, Australia)

  • Mark Diesendorf

    (Institute of Environmental Studies, University of New South Wales, Australia)

Abstract

If long-term greenhouse gas emissions in Australia are to be reduced, renewable energy is likely to be critical. This is particularly so if deep cuts are eventually implemented. Current government policies ( including emissions trading and electricity, the feed-in tariffs announced in 2008), are likely to have only modest impacts on renewable electricity generation in Australia at least until 2020. Australia’s renewable electricity base will remain narrow with little solar technologies’ contribution before 2020. This will not provide an adequate basis for delivering long-term deep cuts to Australia’s greenhouse emissions nor for achieving major greenhouse gas emission reductions at least cost. The future of Australia’s renewable electricity rests mainly with the success, or otherwise, of its Mandatory Renewable Energy Target and expanded Renewable Energy Target. Their effectiveness may be eroded, however, by the long-term banking of tradable certificates used with both target mechanisms. Unless there is a change of policy mechanisms, Australia will probably fail to reach its renewable electricity target of 20 per cent by 2020. Australia will also fail to build up its solar and hot rock geothermal electricity generation capacity to make large supply contributions beyond 2020.

Suggested Citation

  • Greg Buckman & Mark Diesendorf, 2009. "The future of renewable electricity in Australia," Environmental Economics Research Hub Research Reports 0930, Environmental Economics Research Hub, Crawford School of Public Policy, The Australian National University.
  • Handle: RePEc:een:eenhrr:0930
    as

    Download full text from publisher

    File URL: https://crawford.anu.edu.au/research_units/eerh/pdf/EERH_RR30.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hoogwijk, Monique & de Vries, Bert & Turkenburg, Wim, 2004. "Assessment of the global and regional geographical, technical and economic potential of onshore wind energy," Energy Economics, Elsevier, vol. 26(5), pages 889-919, September.
    2. Morthorst, P. E., 2001. "Interactions of a tradable green certificate market with a tradable permits market," Energy Policy, Elsevier, vol. 29(5), pages 345-353, April.
    3. Garnaut,Ross, 2008. "The Garnaut Climate Change Review," Cambridge Books, Cambridge University Press, number 9780521744447, September.
    4. de Vries, Bert J.M. & van Vuuren, Detlef P. & Hoogwijk, Monique M., 2007. "Renewable energy sources: Their global potential for the first-half of the 21st century at a global level: An integrated approach," Energy Policy, Elsevier, vol. 35(4), pages 2590-2610, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buckman, Greg & Diesendorf, Mark, 2009. "The Future of Renewable Electricity in Australia," Research Reports 94879, Australian National University, Environmental Economics Research Hub.
    2. Buckman, Greg & Diesendorf, Mark, 2010. "Design limitations in Australian renewable electricity policies," Energy Policy, Elsevier, vol. 38(7), pages 3365-3376, July.
    3. Silva Herran, Diego & Dai, Hancheng & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Global assessment of onshore wind power resources considering the distance to urban areas," Energy Policy, Elsevier, vol. 91(C), pages 75-86.
    4. Arias-Gaviria, Jessica & Osorio, Andres F. & Arango-Aramburo, Santiago, 2020. "Estimating the practical potential for deep ocean water extraction in the Caribbean," Renewable Energy, Elsevier, vol. 150(C), pages 307-319.
    5. Christoph Heinzel & Thomas Winkler, 2011. "Economic functioning and politically pragmatic justification of tradable green certificates in Poland," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 13(2), pages 157-175, June.
    6. kos Hamburger & G bor Harangoz, 2018. "Factors Affecting the Evolution of Renewable Electricity Generating Capacities: A Panel Data Analysis of European Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 161-172.
    7. Angelis-Dimakis, Athanasios & Biberacher, Markus & Dominguez, Javier & Fiorese, Giulia & Gadocha, Sabine & Gnansounou, Edgard & Guariso, Giorgio & Kartalidis, Avraam & Panichelli, Luis & Pinedo, Irene, 2011. "Methods and tools to evaluate the availability of renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1182-1200, February.
    8. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    9. Bossavy, Arthur & Girard, Robin & Kariniotakis, Georges, 2016. "Sensitivity analysis in the technical potential assessment of onshore wind and ground solar photovoltaic power resources at regional scale," Applied Energy, Elsevier, vol. 182(C), pages 145-153.
    10. Dupré la Tour, Marie-Alix, 2023. "Photovoltaic and wind energy potential in Europe – A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    11. Dai, Hancheng & Silva Herran, Diego & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Key factors affecting long-term penetration of global onshore wind energy integrating top-down and bottom-up approaches," Renewable Energy, Elsevier, vol. 85(C), pages 19-30.
    12. Mercure, Jean-François & Salas, Pablo, 2013. "On the global economic potentials and marginal costs of non-renewable resources and the price of energy commodities," Energy Policy, Elsevier, vol. 63(C), pages 469-483.
    13. Mercure, Jean-François & Salas, Pablo, 2012. "An assessement of global energy resource economic potentials," Energy, Elsevier, vol. 46(1), pages 322-336.
    14. Jean-Francois Mercure & Pablo Salas, 2013. "An assessment of energy resources for global decarbonisation," 4CMR Working Paper Series 002, University of Cambridge, Department of Land Economy, Cambridge Centre for Climate Change Mitigation Research.
    15. Lancker, Kira & Quaas, Martin F., 2019. "Increasing marginal costs and the efficiency of differentiated feed-in tariffs," Energy Economics, Elsevier, vol. 83(C), pages 104-118.
    16. de Castro, Carlos & Mediavilla, Margarita & Miguel, Luis Javier & Frechoso, Fernando, 2011. "Global wind power potential: Physical and technological limits," Energy Policy, Elsevier, vol. 39(10), pages 6677-6682, October.
    17. Bianchi, Emilio & Solarte, Andrés & Guozden, Tomás Manuel, 2017. "Large scale climate drivers for wind resource in Southern South America," Renewable Energy, Elsevier, vol. 114(PB), pages 708-715.
    18. Narbel, Patrick A. & Hansen, Jan Petter, 2014. "Estimating the cost of future global energy supply," Discussion Papers 2014/14, Norwegian School of Economics, Department of Business and Management Science.
    19. Kym Anderson & Signe Nelgen & Ernesto Valenzuela & Glyn Wittwer, 2009. "Economic contributions and characteristics of grapes and wine in AustraliaÂ’s wine regions," Centre for International Economic Studies Working Papers 2009-01, University of Adelaide, Centre for International Economic Studies.
    20. John Foster & Liam Wagner & Phil Wild & Junhua Zhao & Lucas Skoofa & Craig Froome, 2011. "Market and Economic Modelling of the Intelligent Grid: End of Year Report 2009," Energy Economics and Management Group Working Papers 09, School of Economics, University of Queensland, Australia.

    More about this item

    Keywords

    Renewable electricity; energy; greenhouse emissions; emissions trading; renewable portfolio standard; feed-in tariff.;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:een:eenhrr:0930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CAP Web Team (email available below). General contact details of provider: https://edirc.repec.org/data/asanuau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.