IDEAS home Printed from https://ideas.repec.org/p/een/crwfrp/1201.html
   My bibliography  Save this paper

Renewable Technologies and Risk Mitigation in Small Island Developing States (SIDS): Fiji's Electricity Sector

Author

Listed:
  • Matthew Dornan
  • Frank Jotzo

Abstract

In recent years, renewable energy technologies have been advocated in Small Island Developing States (SIDS) in the Pacific as a risk-mitigation measure against oil price volatility. Despite this, there have been no attempts to measure the impact of renewable technologies on financial risk in these countries. This paper develops and applies a stochastic simulation model in order to assess the effect of renewable technologies on the financial risk and cost of electricity supply in Fiji. The modelling results support investments in some, although not all, renewable technologies. Investments in low-cost, low-risk technologies such as energy efficiency, geothermal, biomass and bagasse technologies are found to lower both portfolio generation costs and financial risk. This suggests the Government of Fiji should be encouraging further investment in these technologies, commensurate with increases in total electricity supply. It also suggests that the FEA should prioritize such investments over its planned expansion of hydro-power generation. Renewable technology investments in other SIDS in the Pacific are likely to involve similar risk mitigation benefits.

Suggested Citation

  • Matthew Dornan & Frank Jotzo, 2012. "Renewable Technologies and Risk Mitigation in Small Island Developing States (SIDS): Fiji's Electricity Sector," Crawford School Research Papers 1201, Crawford School of Public Policy, The Australian National University.
  • Handle: RePEc:een:crwfrp:1201
    as

    Download full text from publisher

    File URL: http://ssrn.com/abstract=2037657
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bar-Lev, Dan & Katz, Steven, 1976. "A Portfolio Approach to Fossil Fuel Procurement in the Electric Utility Industry," Journal of Finance, American Finance Association, vol. 31(3), pages 933-947, June.
    2. Awerbuch, Shimon & Sauter, Raphael, 2006. "Exploiting the oil-GDP effect to support renewables deployment," Energy Policy, Elsevier, vol. 34(17), pages 2805-2819, November.
    3. Shimon Awerbuch, 2006. "Portfolio-Based Electricity Generation Planning: Policy Implications For Renewables And Energy Security," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(3), pages 693-710, May.
    4. Gotham, Douglas & Muthuraman, Kumar & Preckel, Paul & Rardin, Ronald & Ruangpattana, Suriya, 2009. "A load factor based mean-variance analysis for fuel diversification," Energy Economics, Elsevier, vol. 31(2), pages 249-256, March.
    5. Craig Sugden, 2009. "Responding to High Commodity Prices," Asian-Pacific Economic Literature, The Crawford School, The Australian National University, vol. 23(1), pages 79-105, May.
    6. Allan, Grant & Eromenko, Igor & McGregor, Peter & Swales, Kim, 2011. "The regional electricity generation mix in Scotland: A portfolio selection approach incorporating marine technologies," Energy Policy, Elsevier, vol. 39(1), pages 6-22, January.
    7. Weisser, Daniel, 2004. "Power sector reform in small island developing states: what role for renewable energy technologies?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(2), pages 101-127, April.
    8. Mayer, Peter C., 2000. "Reliability economies of scale for tropical island electric power," Energy Economics, Elsevier, vol. 22(3), pages 319-330, June.
    9. Awerbuch, Shimon, 2000. "Investing in photovoltaics: risk, accounting and the value of new technology," Energy Policy, Elsevier, vol. 28(14), pages 1023-1035, November.
    10. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    11. Jamie Sanderson & Sardar M. N. Islam, 2007. "Climate Change and Economic Development," Palgrave Macmillan Books, Palgrave Macmillan, number 978-0-230-59012-0.
    12. Weisser, Daniel, 2004. "On the economics of electricity consumption in small island developing states: a role for renewable energy technologies?," Energy Policy, Elsevier, vol. 32(1), pages 127-140, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dornan, Matthew, 2014. "Reform despite politics? The political economy of power sector reform in Fiji, 1996–2013," Energy Policy, Elsevier, vol. 67(C), pages 703-712.
    2. Camilleri, Silvio John & Falzon, Joseph, 2013. "The Challenges of Productivity Growth in the Small Island States of Europe: A Critical Look of Malta and Cyprus," MPRA Paper 62489, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dornan, Matthew & Jotzo, Frank, 2015. "Renewable technologies and risk mitigation in small island developing states: Fiji’s electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 35-48.
    2. Marrero, Gustavo A. & Ramos-Real, Francisco Javier, 2010. "Electricity generation cost in isolated system: The complementarities of natural gas and renewables in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2808-2818, December.
    3. Pérez Odeh, Rodrigo & Watts, David & Flores, Yarela, 2018. "Planning in a changing environment: Applications of portfolio optimisation to deal with risk in the electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3808-3823.
    4. Fuss, Sabine & Szolgayová, Jana & Khabarov, Nikolay & Obersteiner, Michael, 2012. "Renewables and climate change mitigation: Irreversible energy investment under uncertainty and portfolio effects," Energy Policy, Elsevier, vol. 40(C), pages 59-68.
    5. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2017. "Risk-based methods for sustainable energy system planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 602-615.
    6. Delarue, Erik & De Jonghe, Cedric & Belmans, Ronnie & D'haeseleer, William, 2011. "Applying portfolio theory to the electricity sector: Energy versus power," Energy Economics, Elsevier, vol. 33(1), pages 12-23, January.
    7. Inzunza, Andrés & Moreno, Rodrigo & Bernales, Alejandro & Rudnick, Hugh, 2016. "CVaR constrained planning of renewable generation with consideration of system inertial response, reserve services and demand participation," Energy Economics, Elsevier, vol. 59(C), pages 104-117.
    8. Locatelli, Giorgio & Mancini, Mauro, 2011. "Large and small baseload power plants: Drivers to define the optimal portfolios," Energy Policy, Elsevier, vol. 39(12), pages 7762-7775.
    9. Sunderkötter, Malte & Weber, Christoph, 2012. "Valuing fuel diversification in power generation capacity planning," Energy Economics, Elsevier, vol. 34(5), pages 1664-1674.
    10. Zhang, Mingming & Tang, Yamei & Liu, Liyun & Zhou, Dequn, 2022. "Optimal investment portfolio strategies for power enterprises under multi-policy scenarios of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    11. Jano-Ito, Marco A. & Crawford-Brown, Douglas, 2017. "Investment decisions considering economic, environmental and social factors: An actors' perspective for the electricity sector of Mexico," Energy, Elsevier, vol. 121(C), pages 92-106.
    12. Rowan Adams & Tooraj Jamasb, 2016. "Optimal Power Generation Portfolios with Renewables: An Application to the UK," Working Papers EPRG 1620, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    13. Kim, Yeong Jae & Cho, Seong-Hoon & Sharma, Bijay P., 2021. "Constructing efficient portfolios of low-carbon technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    14. Reynolds, Travis & Kolodinsky, Jane & Murray, Byron, 2012. "Consumer preferences and willingness to pay for compact fluorescent lighting: Policy implications for energy efficiency promotion in Saint Lucia," Energy Policy, Elsevier, vol. 41(C), pages 712-722.
    15. Vithayasrichareon, Peerapat & MacGill, Iain F., 2013. "Assessing the value of wind generation in future carbon constrained electricity industries," Energy Policy, Elsevier, vol. 53(C), pages 400-412.
    16. Wüstenhagen, Rolf & Menichetti, Emanuela, 2012. "Strategic choices for renewable energy investment: Conceptual framework and opportunities for further research," Energy Policy, Elsevier, vol. 40(C), pages 1-10.
    17. Min, Daiki & Chung, Jaewoo, 2013. "Evaluation of the long-term power generation mix: The case study of South Korea's energy policy," Energy Policy, Elsevier, vol. 62(C), pages 1544-1552.
    18. Arash Farnoosh, 2016. "On the economic optimization of national power generation mix in Iran: A Markowitz' portfolio-based approach," Working Papers hal-02475534, HAL.
    19. repec:use:tkiwps:11 is not listed on IDEAS
    20. Guy Meunier, 2014. "Risk Aversion and Technology Portfolios," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 44(4), pages 347-365, June.
    21. Andini, Corrado & Cabral, Ricardo & Santos, José Eusébio, 2019. "The macroeconomic impact of renewable electricity power generation projects," Renewable Energy, Elsevier, vol. 131(C), pages 1047-1059.

    More about this item

    Keywords

    Pacific island countries; renewable energy technologies; small island developing states; SIDS; risk mitigation; portfolio theory; electricity generation;
    All these keywords.

    JEL classification:

    • O14 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Industrialization; Manufacturing and Service Industries; Choice of Technology
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:een:crwfrp:1201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Stern (email available below). General contact details of provider: https://edirc.repec.org/data/asanuau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.