IDEAS home Printed from https://ideas.repec.org/p/eei/rpaper/eeri_rp_2018_16.html
   My bibliography  Save this paper

Merger and Acquire of Series: A New Approach of Time Series Modeling

Author

Listed:
  • Jitendra Kumar
  • Varun Agiwal

Abstract

Present paper proposes an autoregressive time series model to study the behaviour of merger and acquire concept which is equally important as other available theories like structural break, de- trending etc. The main motivation behind newly proposed merged autoregressive (M-AR) model is to study the impact of merger in the parameters as well as acquired series. First, we recommend the estimation setup using popular classical least square and posterior distribution under Bayesian method with different loss function. Then, we obtain Bayes factor, full Bayesian significance test and credible interval to know the significance of the merger series. A simulation as well as empirical study is illustrated.

Suggested Citation

  • Jitendra Kumar & Varun Agiwal, 2018. "Merger and Acquire of Series: A New Approach of Time Series Modeling," EERI Research Paper Series EERI RP 2018/16, Economics and Econometrics Research Institute (EERI), Brussels.
  • Handle: RePEc:eei:rpaper:eeri_rp_2018_16
    as

    Download full text from publisher

    File URL: http://www.eeri.eu/documents/wp/EERI_RP_2018_16.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. K. S. Chan & H. Tong, 1986. "On Estimating Thresholds In Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 7(3), pages 179-190, May.
    2. Rao-Nicholson, Rekha & Salaber, Julie & Cao, Tuan Hiep, 2016. "Long-term performance of mergers and acquisitions in ASEAN countries," Research in International Business and Finance, Elsevier, vol. 36(C), pages 373-387.
    3. Devra L. Golbe & Lawrence J. White, 1988. "A Time-Series Analysis of Mergers and Acquisitions in the U.S. Economy," NBER Chapters, in: Corporate Takeovers: Causes and Consequences, pages 265-310, National Bureau of Economic Research, Inc.
    4. Berger, Allen N. & Demsetz, Rebecca S. & Strahan, Philip E., 1999. "The consolidation of the financial services industry: Causes, consequences, and implications for the future," Journal of Banking & Finance, Elsevier, vol. 23(2-4), pages 135-194, February.
    5. Maditinos D. & Theriou N. & Demetriades E., 2009. "The Effect of Mergers and Acquisitions on the Performance of Companies – The Greek Case of Ioniki-Laiki Bank and Pisteos Bank," European Research Studies Journal, European Research Studies Journal, vol. 0(2), pages 111-130.
    6. Seung Hee Choi & Bang Nam Jeon, 2011. "The impact of the macroeconomic environment on merger activity: evidence from US time-series data," Applied Financial Economics, Taylor & Francis Journals, vol. 21(4), pages 233-249.
    7. Healy, Paul M. & Palepu, Krishna G. & Ruback, Richard S., 1992. "Does corporate performance improve after mergers?," Journal of Financial Economics, Elsevier, vol. 31(2), pages 135-175, April.
    8. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bel, K. & Paap, R., 2013. "Modeling the impact of forecast-based regime switches on macroeconomic time series," Econometric Institute Research Papers EI 2013-25, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Kanungo, Rama Prasad, 2021. "Uncertainty of M&As under asymmetric estimation," Journal of Business Research, Elsevier, vol. 122(C), pages 774-793.
    3. Lütkepohl,Helmut & Krätzig,Markus (ed.), 2004. "Applied Time Series Econometrics," Cambridge Books, Cambridge University Press, number 9780521547871, January.
    4. Pierre Lasserre & Moez Souissi, 2007. "It Takes Two to Tango. La fusion : exercice de deux options réelles," Économie et Prévision, Programme National Persée, vol. 178(2), pages 51-65.
    5. Martinez Oscar & Olmo Jose, 2012. "A Nonlinear Threshold Model for the Dependence of Extremes of Stationary Sequences," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(3), pages 1-39, September.
    6. Lijian Yang & Wolfgang Hardle & Jens Nielsen, 1999. "Nonparametric Autoregression with Multiplicative Volatility and Additive mean," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(5), pages 579-604, September.
    7. Martynova, M. & Renneboog, L.D.R., 2005. "Takeover Waves : Triggers, Performance and Motives," Discussion Paper 2005-107, Tilburg University, Center for Economic Research.
    8. Nai Chiek Aik & Taufiq Hassan & Shamsher Mohamad, 2015. "Do Malaysian Horizontal Mergers and Acquisitions Create Value?," Global Business Review, International Management Institute, vol. 16(5_suppl), pages 15-27, October.
    9. Kushal Banik Chowdhury & Nityananda Sarkar, 2015. "The Effect of Inflation on Inflation Uncertainty in the G7 Countries: A Double Threshold GARCH Model," International Econometric Review (IER), Econometric Research Association, vol. 7(1), pages 34-50, April.
    10. Ru-Shiun Liou & Rekha Rao-Nicholson, 2019. "Age Matters: The Contingency of Economic Distance and Economic Freedom in Emerging Market Firm’s Cross-Border M&A Performance," Management International Review, Springer, vol. 59(3), pages 355-386, June.
    11. CHEN, Cathy W.S. & WENG, Monica M.C. & WATANABE, Toshiaki & 渡部, 渡部, 2015. "Employing Bayesian Forecasting of Value-at-Risk to Determine an Appropriate Model for Risk Management," Discussion paper series HIAS-E-16, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    12. Jamal Al-Khasawneh, 2013. "Pairwise X-efficiency combinations of merging banks: analysis of the fifth merger wave," Review of Quantitative Finance and Accounting, Springer, vol. 41(1), pages 1-28, July.
    13. Ben Naceur, Hassen, 2014. "Stock Market Indexes: A random walk test with ARCH (q) disturbances," MPRA Paper 78978, University Library of Munich, Germany.
    14. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
    15. Fischer, Thomas & Krauss, Christopher & Treichel, Alex, 2018. "Machine learning for time series forecasting - a simulation study," FAU Discussion Papers in Economics 02/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    16. Jennifer Castle & David Hendry, 2013. "Semi-automatic Non-linear Model selection," Economics Series Working Papers 654, University of Oxford, Department of Economics.
    17. Martynova, Marina & Renneboog, Luc, 2008. "A century of corporate takeovers: What have we learned and where do we stand?," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2148-2177, October.
    18. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, January.
    19. Gayle DeLong & Robert DeYoung, 2004. "Learning by observing: information spillovers in the execution and valuation of commercial bank M&As," Working Paper Series WP-04-17, Federal Reserve Bank of Chicago.
    20. Cathy Chen & Simon Lin & Philip Yu, 2012. "Smooth Transition Quantile Capital Asset Pricing Models with Heteroscedasticity," Computational Economics, Springer;Society for Computational Economics, vol. 40(1), pages 19-48, June.

    More about this item

    Keywords

    Autoregressive model; Break point; Merger series; Bayesian inference.;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G34 - Financial Economics - - Corporate Finance and Governance - - - Mergers; Acquisitions; Restructuring; Corporate Governance
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eei:rpaper:eeri_rp_2018_16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Julia van Hove (email available below). General contact details of provider: https://edirc.repec.org/data/eeriibe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.