IDEAS home Printed from https://ideas.repec.org/p/ecm/nawm04/490.html
   My bibliography  Save this paper

A Nonlinear Model of the Business Cycle

Author

Listed:
  • Simon M. Potter
  • Edward E. Leamer

Abstract

The usual index of leading indicators has constant weights on its components and is therefore implicitly premised on the assumption that the dynamical properties of the economy remain the same over time and across phases of the business cycle. We explore the possibility that the business cycle has phases, for example, recessions, recoveries and normal growth, each with its unique dynamics. Based on this possibility we develop a nonlinear model of the business cycle that combines a number of previous approaches. We model the state of the economy as a latent variable with a threshold autoregression structure. In addition to dependence on its own lags the latent variable is also determined by observed economic and financial variables. In turn these variables are modeled as following a nonlinear vector autoregression with regimes defined by the latent business cycle variable. A Markov Chain Monte Carlo algorithm is developed to estimate the model. Special attention is paid to specification of prior distributions given the large dimension of the model. We also investigate using the business cycle chronology of the NBER to aid in the classification of the latent variable. The two main empirical objectives of the model are to provide more accurate predictions of economic variables particularly at turning points and to describe how the dynamics differ across business cycle phases

Suggested Citation

  • Simon M. Potter & Edward E. Leamer, 2004. "A Nonlinear Model of the Business Cycle," Econometric Society 2004 North American Winter Meetings 490, Econometric Society.
  • Handle: RePEc:ecm:nawm04:490
    as

    Download full text from publisher

    File URL: http://repec.org/esNAWM04/up.26196.1049203074.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Diebold, Francis X & Rudebusch, Glenn D, 1992. "Have Postwar Economic Fluctuations Been Stabilized?," American Economic Review, American Economic Association, vol. 82(4), pages 993-1005, September.
    2. Potter, Simon M, 1995. "A Nonlinear Approach to US GNP," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(2), pages 109-125, April-Jun.
    3. Lang, William W. & Nakamura, Leonard I., 1990. "The dynamics of credit markets in a model with learning," Journal of Monetary Economics, Elsevier, vol. 26(2), pages 305-318, October.
    4. Romer, Christina D., 1994. "Remeasuring Business Cycles," The Journal of Economic History, Cambridge University Press, vol. 54(3), pages 573-609, September.
    5. Russell Cooper & Andrew John, 1988. "Coordinating Coordination Failures in Keynesian Models," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 103(3), pages 441-463.
    6. Diebold, Francis X & Rudebusch, Glenn D, 1996. "Measuring Business Cycles: A Modern Perspective," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 67-77, February.
    7. Arturo Estrella & Anthony P. Rodrigues & Sebastian Schich, 2003. "How Stable is the Predictive Power of the Yield Curve? Evidence from Germany and the United States," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 629-644, August.
    8. Benjamin M. Friedman & Kenneth Kuttner, 1993. "Why Does the Paper-Bill Spread Predict Real Economic Activity?," NBER Chapters, in: Business Cycles, Indicators, and Forecasting, pages 213-254, National Bureau of Economic Research, Inc.
    9. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    10. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    11. Kuttner, Kenneth N. & Friedman, Benjamin Morton, 1998. "Indicator Properties of the Paper—Bill Spread: Lessons from Recent Experience," Scholarly Articles 4554251, Harvard University Department of Economics.
    12. Edward E. Leamer, 2001. "The Life Cycle of US Economic Expansions," NBER Working Papers 8192, National Bureau of Economic Research, Inc.
    13. Friedman, Milton, 1993. "The "Plucking Model" of Business Fluctuations Revisited," Economic Inquiry, Western Economic Association International, vol. 31(2), pages 171-177, April.
    14. Koop, Gary & Potter, Simon M., 1998. "Bayes factors and nonlinearity: Evidence from economic time series1," Journal of Econometrics, Elsevier, vol. 88(2), pages 251-281, November.
    15. Gertler, Mark & Lown, Cara S, 1999. "The Information in the High-Yield Bond Spread for the Business Cycle: Evidence and Some Implications," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 15(3), pages 132-150, Autumn.
    16. Benjamin M. Friedman & Kenneth N. Kuttner, 1998. "Indicator Properties Of The Paper-Bill Spread: Lessons From Recent Experience," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 34-44, February.
    17. Martin Chalkley & In Ho Lee, 1998. "Learning and Asymmetric Business Cycles," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 1(3), pages 623-645, July.
    18. Estrella, Arturo & Hardouvelis, Gikas A, 1991. "The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-576, June.
    19. Chang-Jin Kim & Charles R. Nelson, 1999. "Has The U.S. Economy Become More Stable? A Bayesian Approach Based On A Markov-Switching Model Of The Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 608-616, November.
    20. Pesaran, M. Hashem & Potter, Simon M., 1997. "A floor and ceiling model of US output," Journal of Economic Dynamics and Control, Elsevier, vol. 21(4-5), pages 661-695, May.
    21. Neftci, Salih N, 1984. "Are Economic Time Series Asymmetric over the Business Cycle?," Journal of Political Economy, University of Chicago Press, vol. 92(2), pages 307-328, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ryo Horii & Yoshiyasu Ono, 2006. "Learning, Inflation Cycles, and Depression," Discussion Papers in Economics and Business 06-14, Osaka University, Graduate School of Economics.
    2. Ryo Horii & Yoshiyasu Ono, 2022. "Financial crisis and slow recovery with Bayesian learning agents," International Journal of Economic Theory, The International Society for Economic Theory, vol. 18(4), pages 578-606, December.
    3. Marcelle, Chauvet & Simon, Potter, 2007. "Monitoring Business Cycles with Structural Breaks," MPRA Paper 15097, University Library of Munich, Germany, revised 31 Apr 2009.
    4. Horii, Ryo & Ono, Yoshiyasu, 2009. "Information Cycles and Depression in a Stochastic Money-in-Utility Model," MPRA Paper 13485, University Library of Munich, Germany.
    5. Gupta, Rangan & Wohar, Mark, 2017. "Forecasting oil and stock returns with a Qual VAR using over 150years off data," Energy Economics, Elsevier, vol. 62(C), pages 181-186.
    6. Ryo Horii & Yoshiyasu Ono, 2005. "Financial Crisis and Recovery: Learning-based Liquidity Preference Fluctuations," Macroeconomics 0504016, University Library of Munich, Germany.
    7. Ryo Horii & Yoshiyasu Ono, 2004. "Learning, Liquidity Preference, and Business Cycle," ISER Discussion Paper 0601, Institute of Social and Economic Research, Osaka University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcelle Chauvet & Simon Potter, 2005. "Forecasting recessions using the yield curve," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(2), pages 77-103.
    2. Kim, Chang-Jin & Nelson, Charles R, 2001. "A Bayesian Approach to Testing for Markov-Switching in Univariate and Dynamic Factor Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(4), pages 989-1013, November.
    3. George Athanasopoulos & Heather M. Anderson & Farshid Vahid, 2007. "Nonlinear autoregressive leading indicator models of output in G-7 countries," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(1), pages 63-87.
    4. Simon M. Potter, 1999. "Fluctuations in confidence and asymmetric business cycles," Staff Reports 66, Federal Reserve Bank of New York.
    5. Chang‐Jin Kim & Jeremy M. Piger & Richard Startz, 2007. "The Dynamic Relationship between Permanent and Transitory Components of U.S. Business Cycles," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(1), pages 187-204, February.
    6. Kim, Chang-Jin & Piger, Jeremy, 2002. "Common stochastic trends, common cycles, and asymmetry in economic fluctuations," Journal of Monetary Economics, Elsevier, vol. 49(6), pages 1189-1211, September.
    7. Esther Fernández Galar & Javier Gómez Biscarri, 2003. "Revisiting the Ability of Interest Rate Spreads to Predict Recessions: Evidence for a," Faculty Working Papers 04/03, School of Economics and Business Administration, University of Navarra.
    8. Chang-Jin Kim & Jeremy M. Piger & Richard Startz, 2001. "Permanent and transitory components of business cycles: their relative importance and dynamic relationship," International Finance Discussion Papers 703, Board of Governors of the Federal Reserve System (U.S.).
    9. L.A. Gil-Alana, 2005. "Fractional Cyclical Structures & Business Cycles in the Specification of the US Real Output," European Research Studies Journal, European Research Studies Journal, vol. 0(1-2), pages 99-126.
    10. McKay, Alisdair & Reis, Ricardo, 2008. "The brevity and violence of contractions and expansions," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 738-751, May.
    11. Diebold, Francis X & Rudebusch, Glenn D, 1996. "Measuring Business Cycles: A Modern Perspective," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 67-77, February.
    12. Serena Ng & Jonathan H. Wright, 2013. "Facts and Challenges from the Great Recession for Forecasting and Macroeconomic Modeling," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1120-1154, December.
    13. Gilchrist, Simon & Yankov, Vladimir & Zakrajsek, Egon, 2009. "Credit market shocks and economic fluctuations: Evidence from corporate bond and stock markets," Journal of Monetary Economics, Elsevier, vol. 56(4), pages 471-493, May.
    14. James Morley & Jeremy Piger, 2006. "The Importance of Nonlinearity in Reproducing Business Cycle Features," Contributions to Economic Analysis, in: Nonlinear Time Series Analysis of Business Cycles, pages 75-95, Emerald Group Publishing Limited.
    15. Ivanova, Detelina & Lahiri, Kajal & Seitz, Franz, 2000. "Interest rate spreads as predictors of German inflation and business cycles," International Journal of Forecasting, Elsevier, vol. 16(1), pages 39-58.
    16. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    17. Chauvet, Marcelle & Senyuz, Zeynep, 2008. "A Joint Dynamic Bi-Factor Model of the Yield Curve and the Economy as a Predictor of Business Cycles," MPRA Paper 15076, University Library of Munich, Germany, revised Apr 2009.
    18. Mili, Mehdi & Sahut, Jean-Michel & Teulon, Frédéric, 2012. "Non linear and asymmetric linkages between real growth in the Euro area and global financial market conditions: New evidence," Economic Modelling, Elsevier, vol. 29(3), pages 734-741.
    19. Singh, Tarlok, 2014. "On the regime-switching and asymmetric dynamics of economic growth in the OECD countries," Research in Economics, Elsevier, vol. 68(2), pages 169-192.

    More about this item

    Keywords

    nonlinear; business cycle; Bayesian;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:nawm04:490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.