IDEAS home Printed from https://ideas.repec.org/p/ecl/stabus/3644.html
   My bibliography  Save this paper

Estimation Considerations in Contextual Bandits

Author

Listed:
  • Dimakopoulou, Maria
  • Athey, Susan

    (Stanford University)

  • Imbens, Guido W.

    (Stanford University)

Abstract

Although many contextual bandit algorithms have similar theoretical guarantees, the characteristics of real-world applications oftentimes result in large performance dissimilarities across algorithms. We study a consideration for the exploration vs. exploitation framework that does not arise in non-contextual bandits: the way exploration is conducted in the present may affect the bias and variance in the potential outcome model estimation in subsequent stages of learning. We show that contextual bandit algorithms are sensitive to the estimation method of the outcome model as well as the exploration method used, particularly in the presence of rich heterogeneity or complex outcome models, which can lead to difficult estimation problems along the path of learning. We propose new contextual bandit designs, combining parametric and non-parametric statistical estimation methods with causal inference methods in order to reduce the estimation bias that results from adaptive treatment assignment. We provide empirical evidence that guides the choice among the alternatives in different scenarios, such as prejudice (non-representative user contexts) in the initial training data.

Suggested Citation

  • Dimakopoulou, Maria & Athey, Susan & Imbens, Guido W., 2018. "Estimation Considerations in Contextual Bandits," Research Papers 3644, Stanford University, Graduate School of Business.
  • Handle: RePEc:ecl:stabus:3644
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Susan Athey & Julie Tibshirani & Stefan Wager, 2016. "Generalized Random Forests," Papers 1610.01271, arXiv.org, revised Apr 2018.
    2. Athey, Susan & Wager, Stefan, 2017. "Efficient Policy Learning," Research Papers 3506, Stanford University, Graduate School of Business.
    3. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caio Waisman & Harikesh S. Nair & Carlos Carrion, 2019. "Online Causal Inference for Advertising in Real-Time Bidding Auctions," Papers 1908.08600, arXiv.org, revised Feb 2024.
    2. Yusuke Narita & Shota Yasui & Kohei Yata, 2020. "Debiased Off-Policy Evaluation for Recommendation Systems," Papers 2002.08536, arXiv.org, revised Aug 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rina Friedberg & Julie Tibshirani & Susan Athey & Stefan Wager, 2018. "Local Linear Forests," Papers 1807.11408, arXiv.org, revised Sep 2020.
    2. Zhengyuan Zhou & Susan Athey & Stefan Wager, 2023. "Offline Multi-Action Policy Learning: Generalization and Optimization," Operations Research, INFORMS, vol. 71(1), pages 148-183, January.
    3. Susan Athey & Raj Chetty & Guido Imbens, 2020. "Combining Experimental and Observational Data to Estimate Treatment Effects on Long Term Outcomes," Papers 2006.09676, arXiv.org.
    4. Miruna Oprescu & Vasilis Syrgkanis & Zhiwei Steven Wu, 2018. "Orthogonal Random Forest for Causal Inference," Papers 1806.03467, arXiv.org, revised Sep 2019.
    5. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    6. Maria Dimakopoulou & Zhimei Ren & Zhengyuan Zhou, 2021. "Online Multi-Armed Bandits with Adaptive Inference," Papers 2102.13202, arXiv.org, revised Jun 2021.
    7. Valente, Marica, 2023. "Policy evaluation of waste pricing programs using heterogeneous causal effect estimation," Journal of Environmental Economics and Management, Elsevier, vol. 117(C).
    8. Nathan Kallus, 2022. "Treatment Effect Risk: Bounds and Inference," Papers 2201.05893, arXiv.org, revised Jul 2022.
    9. Hema Yoganarasimhan & Ebrahim Barzegary & Abhishek Pani, 2020. "Design and Evaluation of Personalized Free Trials," Papers 2006.13420, arXiv.org.
    10. Davide Viviano & Jelena Bradic, 2020. "Fair Policy Targeting," Papers 2005.12395, arXiv.org, revised Jun 2022.
    11. Shinde, Nilesh N. & Do Valle, Stella Z. Schons & Maia, Alexandre Gori & Amacher, Gregory S., 2022. "Can an environmental policy contribute to the reduction of land conflict? Evidence from the Rural Environmental Registry (CAR) in the Brazilian Amazon," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322584, Agricultural and Applied Economics Association.
    12. Newham, Melissa & Valente, Marica, 2024. "The cost of influence: How gifts to physicians shape prescriptions and drug costs," Journal of Health Economics, Elsevier, vol. 95(C).
    13. Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
    14. Masahiro Kato & Masaaki Imaizumi & Takuya Ishihara & Toru Kitagawa, 2022. "Best Arm Identification with Contextual Information under a Small Gap," Papers 2209.07330, arXiv.org, revised Jan 2023.
    15. Qingyuan Zhao & Dylan S. Small & Ashkan Ertefaie, 2022. "Selective inference for effect modification via the lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 382-413, April.
    16. Vishal Gupta & Brian Rongqing Han & Song-Hee Kim & Hyung Paek, 2020. "Maximizing Intervention Effectiveness," Management Science, INFORMS, vol. 66(12), pages 5576-5598, December.
    17. Mert Demirer & Vasilis Syrgkanis & Greg Lewis & Victor Chernozhukov, 2019. "Semi-Parametric Efficient Policy Learning with Continuous Actions," CeMMAP working papers CWP34/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. Gabriel Okasa, 2022. "Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit Performance," Papers 2201.12692, arXiv.org.
    19. Sven Resnjanskij & Jens Ruhose & Simon Wiederhold & Ludger Wößmann, 2021. "Mentoring verbessert die Arbeitsmarktchancen von stark benachteiligten Jugendlichen," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 74(02), pages 31-38, February.
    20. Lechner, Michael, 2018. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," IZA Discussion Papers 12040, Institute of Labor Economics (IZA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecl:stabus:3644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/gsstaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.