IDEAS home Printed from https://ideas.repec.org/p/ecb/ecbwps/20111391.html
   My bibliography  Save this paper

Interest rate expectations and uncertainty during ECB governing council days: evidence from intraday implied densities of 3-month Euribor

Author

Listed:
  • Puigvert Gutiérrez, Josep Maria
  • Vergote, Olivier

Abstract

This paper analyses changes in short-term interest rate expectations and uncertainty during ECB Governing Council days. For this purpose, it first extends the estimation of risk-neutral probability density functions up to tick frequency. In particular, the non-parametric estimator of these densities, which is based on fitting implied volatility curves, is applied to estimate intraday expectations of threemonth EURIBOR three months ahead. The estimator proves to be robust to market microstructure noise and able to capture meaningful changes in expectations. Estimates of the noise impact on the statistical moments of the densities further enhance the interpretation. In addition, the paper assesses the impact of the ECB communication during Governing Council days. The results show that the whole density may react to the communication and that such repositioning of market participants JEL Classification: C14, E43, E52, E58, E61

Suggested Citation

  • Puigvert Gutiérrez, Josep Maria & Vergote, Olivier, 2011. "Interest rate expectations and uncertainty during ECB governing council days: evidence from intraday implied densities of 3-month Euribor," Working Paper Series 1391, European Central Bank.
  • Handle: RePEc:ecb:ecbwps:20111391
    Note: 1503965
    as

    Download full text from publisher

    File URL: https://www.ecb.europa.eu//pub/pdf/scpwps/ecbwp1391.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Claus Brand & Daniel Buncic & Jarkko Turunen, 2010. "The Impact of ECB Monetary Policy Decisions and Communication on the Yield Curve," Journal of the European Economic Association, MIT Press, vol. 8(6), pages 1266-1298, December.
    2. Luca Agnello & Jacopo Cimadomo, 2012. "Discretionary Fiscal Policies over the Cycle: New Evidence Based on the ESCB Disaggregated Approach," International Journal of Central Banking, International Journal of Central Banking, vol. 8(2), pages 43-85, June.
    3. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    4. Michael Ehrmann & Marcel Fratzscher, 2009. "Explaining Monetary Policy in Press Conferences," International Journal of Central Banking, International Journal of Central Banking, vol. 5(2), pages 42-84, June.
    5. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    6. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    7. Bødskov Andersen, Allan & Wagener, Tom, 2002. "Extracting risk neutral probability densities by fitting implied volatility smiles: some methodological points and an application to the 3M Euribor futures option prices," Working Paper Series 198, European Central Bank.
    8. de Vincent-Humphreys, Rupert & Puigvert Gutiérrez, Josep Maria, 2010. "A quantitative mirror on the Euribor market using implied probability density functions," Working Paper Series 1281, European Central Bank.
    9. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    10. Josep Puigvert-Gutiérrez & Rupert Vincent-Humphreys, 2012. "A Quantitative Mirror on the Euribor Market Using Implied Probability Density Functions," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 2(1), pages 1-31, June.
    11. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    12. Bhupinder Bahra, 1997. "Implied risk-neutral probability density functions from option prices: theory and application," Bank of England working papers 66, Bank of England.
    13. Allan M. Malz, 1998. "Option Prices And The Probability Distribution Of Exchange Rates," World Scientific Book Chapters, in: Zhaohui Chen (ed.), Currency Options And Exchange Rate Economics, chapter 7, pages 108-137, World Scientific Publishing Co. Pte. Ltd..
    14. Bliss, Robert R. & Panigirtzoglou, Nikolaos, 2002. "Testing the stability of implied probability density functions," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 381-422, March.
    15. Andersson, Magnus, 2007. "Using intraday data to gauge financial market responses to Fed and ECB monetary policy decisions," Working Paper Series 726, European Central Bank.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Leonhardt & A. W. Rathgeber & J. Stadler & S. Stöckl, 2015. "Pricing fx forwards in OTC markets - new evidence for the pricing mechanism when faced with counterparty risk," Applied Economics, Taylor & Francis Journals, vol. 47(27), pages 2860-2877, June.
    2. Roberto Casarin & Fabrizio Leisen & German Molina & Enrique ter Horst, 2014. "A Bayesian Beta Markov Random Field Calibration of the Term Structure of Implied Risk Neutral Densities," Papers 1409.1956, arXiv.org.
    3. Dalderop, Jeroen, 2020. "Nonparametric filtering of conditional state-price densities," Journal of Econometrics, Elsevier, vol. 214(2), pages 295-325.
    4. Jung, Alexander, 2016. "Have monetary data releases helped markets to predict the interest rate decisions of the European Central Bank?," Working Paper Series 1926, European Central Bank.
    5. Jukka Sihvonen & Sami Vähämaa, 2014. "Forward‐Looking Monetary Policy Rules and Option‐Implied Interest Rate Expectations," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(4), pages 346-373, April.
    6. Rui Fan & Stephen J. Taylor & Matteo Sandri, 2018. "Density forecast comparisons for stock prices, obtained from high‐frequency returns and daily option prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(1), pages 83-103, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josep Puigvert-Gutiérrez & Rupert Vincent-Humphreys, 2012. "A Quantitative Mirror on the Euribor Market Using Implied Probability Density Functions," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 2(1), pages 1-31, June.
    2. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    3. Abderrahmen Aloulou & Younes Boujelbene, 2019. "Dynamic analysis of implied risk neutral density," International Journal of Monetary Economics and Finance, Inderscience Enterprises Ltd, vol. 12(1), pages 39-58.
    4. Arindam Kundu & Sumit Kumar & Nutan Kumar Tomar, 2019. "Option Implied Risk-Neutral Density Estimation: A Robust and Flexible Method," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 705-728, August.
    5. Wilkens, Sascha & Roder, Klaus, 2006. "The informational content of option-implied distributions: Evidence from the Eurex index and interest rate futures options market," Global Finance Journal, Elsevier, vol. 17(1), pages 50-74, September.
    6. Nick Gebbia, 2016. "Option-Implied Libor Rate Expectations across Currencies," International Finance Discussion Papers 1182, Board of Governors of the Federal Reserve System (U.S.).
    7. Bondarenko, Oleg, 2003. "Estimation of risk-neutral densities using positive convolution approximation," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 85-112.
    8. Ivanova, Vesela & Puigvert Gutiérrez, Josep Maria, 2014. "Interest rate forecasts, state price densities and risk premium from Euribor options," Journal of Banking & Finance, Elsevier, vol. 48(C), pages 210-223.
    9. Monteiro, Ana Margarida & Tutuncu, Reha H. & Vicente, Luis N., 2008. "Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity," European Journal of Operational Research, Elsevier, vol. 187(2), pages 525-542, June.
    10. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    11. Salazar Celis, Oliver & Liang, Lingzhi & Lemmens, Damiaan & Tempère, Jacques & Cuyt, Annie, 2015. "Determining and benchmarking risk neutral distributions implied from option prices," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 372-387.
    12. Nakamura, Hisashi & Shiratsuka, Shigenori, 1999. "Extracting Market Expectations from Option Prices: Case Studies in Japanese Option Markets," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 17(1), pages 1-43, May.
    13. Ruijun Bu & Kaddour Hadri, 2005. "Estimating the Risk Neutral Probability Density Functions Natural Spline versus Hypergeometric Approach Using European Style Options," Working Papers 200510, University of Liverpool, Department of Economics.
    14. Jondeau, Eric & Rockinger, Michael, 2000. "Reading the smile: the message conveyed by methods which infer risk neutral densities," Journal of International Money and Finance, Elsevier, vol. 19(6), pages 885-915, December.
    15. Halil Ibrahim Aydin & Ahmet Degerli & Pinar Ozlu, 2010. "Recovering Risk-Neutral Densities from Exchange Rate Options: Evidence in Turkey (Kur Opsiyonlarindan Riske Duyarsiz Yogunluk Fonksiyonu Cikarimi: Turkiye Ornegi)," Working Papers 1003, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    16. Datta, Deepa Dhume & Londono, Juan M. & Ross, Landon J., 2017. "Generating options-implied probability densities to understand oil market events," Energy Economics, Elsevier, vol. 64(C), pages 440-457.
    17. Neuhaus, Holger, 1995. "Der Informationsgehalt von Derivaten für die Geldpolitik: Implizite Volatilitäten und Wahrscheinlichkeiten," Discussion Paper Series 1: Economic Studies 1995,03, Deutsche Bundesbank.
    18. Alonso, Francisco & Blanco, Roberto & Rubio Irigoyen, Gonzalo, 2005. "Testing the Forecasting Performance of Ibex 35 Option-implied Risk-neutral Densities," DFAEII Working Papers 1988-088X, University of the Basque Country - Department of Foundations of Economic Analysis II.
    19. Pascal François & Rémi Galarneau‐Vincent & Geneviève Gauthier & Frédéric Godin, 2022. "Venturing into uncharted territory: An extensible implied volatility surface model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1912-1940, October.
    20. Vahamaa, Sami, 2005. "Option-implied asymmetries in bond market expectations around monetary policy actions of the ECB," Journal of Economics and Business, Elsevier, vol. 57(1), pages 23-38.

    More about this item

    Keywords

    announcement effects; central bank communication; interest rate expectations; intraday analysis; option-implied densities; risk-neutral probability density functions; tick data;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy
    • E58 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Central Banks and Their Policies
    • E61 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - Policy Objectives; Policy Designs and Consistency; Policy Coordination

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecb:ecbwps:20111391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Official Publications (email available below). General contact details of provider: https://edirc.repec.org/data/emieude.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.