IDEAS home Printed from https://ideas.repec.org/p/ecb/ecbwps/20101145.html
   My bibliography  Save this paper

An area-wide real-time database for the euro area

Author

Listed:
  • Giannone, Domenico
  • Henry, Jérôme
  • Lalik, Magdalena
  • Modugno, Michele

Abstract

This paper describes how we constructed a real-time database for the euro area covering more than 200 series regularly published in the European Central Bank Monthly Bulletin, as made available ahead of publication to the Governing Council members before their first meeting of the month. We describe the database in details and study the properties of the euro area real-time data flow and data revisions, also providing comparisons with the United States and Japan. We finally illustrate how such revisions can contribute to the uncertainty surrounding key macroeconomic ratios and the NAIRU. JEL Classification: C01, C82, E24, E58

Suggested Citation

  • Giannone, Domenico & Henry, Jérôme & Lalik, Magdalena & Modugno, Michele, 2010. "An area-wide real-time database for the euro area," Working Paper Series 1145, European Central Bank.
  • Handle: RePEc:ecb:ecbwps:20101145
    Note: 123711
    as

    Download full text from publisher

    File URL: https://www.ecb.europa.eu//pub/pdf/scpwps/ecbwp1145.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Swanson Norman, 1996. "Forecasting Using First-Available Versus Fully Revised Economic Time-Series Data," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 1(1), pages 1-20, April.
    2. Athanasios Orphanides & Simon van Norden, 2002. "The Unreliability of Output-Gap Estimates in Real Time," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 569-583, November.
    3. Fair, Ray C & Shiller, Robert J, 1990. "Comparing Information in Forecasts from Econometric Models," American Economic Review, American Economic Association, vol. 80(3), pages 375-389, June.
    4. Sylvia Kaufmann & Peter Kugler, 2010. "A monetary real-time conditional forecast of euro area inflation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(4), pages 388-405.
    5. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    6. Dean Croushore & Tom Stark, 2003. "A Real-Time Data Set for Macroeconomists: Does the Data Vintage Matter?," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 605-617, August.
    7. Athanasios Orphanides, 2001. "Monetary Policy Rules Based on Real-Time Data," American Economic Review, American Economic Association, vol. 91(4), pages 964-985, September.
    8. Richard G. Anderson, 2006. "Replicability, real-time data, and the science of economic research: FRED, ALFRED, and VDC," Review, Federal Reserve Bank of St. Louis, vol. 88(Jan), pages 81-93.
    9. Marcellino, Massimiliano & Musso, Alberto, 2010. "Real time estimates of the euro area output gap: reliability and forecasting performance," Working Paper Series 1157, European Central Bank.
    10. Croushore, Dean, 2006. "Forecasting with Real-Time Macroeconomic Data," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 17, pages 961-982, Elsevier.
    11. Branchi, Mariagnese & Dieden, Heinz Christian & Haine, Wim & Horváth, Csaba & Kanutin, Andrew & Kezbere, Linda, 2007. "Analysis of revisions to general economic statistics," Occasional Paper Series 74, European Central Bank.
    12. Mariagnese Branchi & Christian Dieden & Wim Haine & Csaba Horwáth & Andrew Kanutin & Linda Kezbere, 2007. "Analysis of revisions to general economic statistics," Occasional Paper Series 74, European Central Bank.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emilia Tomczyk, 2013. "End of sample vs. real time data: perspectives for analysis of expectations," Working Papers 68, Department of Applied Econometrics, Warsaw School of Economics.
    2. Dean Croushore, 2011. "Frontiers of Real-Time Data Analysis," Journal of Economic Literature, American Economic Association, vol. 49(1), pages 72-100, March.
    3. Gregory E. Givens, 2017. "Do Data Revisions Matter for DSGE Estimation?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(6), pages 1385-1407, September.
    4. Clements, Michael P. & Galvão, Ana Beatriz, 2013. "Forecasting with vector autoregressive models of data vintages: US output growth and inflation," International Journal of Forecasting, Elsevier, vol. 29(4), pages 698-714.
    5. Clements, Michael P. & Beatriz Galvao, Ana, 2010. "Real-time Forecasting of Inflation and Output Growth in the Presence of Data Revisions," Economic Research Papers 270771, University of Warwick - Department of Economics.
    6. Clements Michael P., 2012. "Forecasting U.S. Output Growth with Non-Linear Models in the Presence of Data Uncertainty," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(1), pages 1-27, January.
    7. Carlo Altavilla & Matteo Ciccarelli, 2011. "Monetary Policy Analysis in Real-Time. Vintage Combination from a Real-Time Dataset," CESifo Working Paper Series 3372, CESifo.
    8. Domenico Giannone & Lucrezia Reichlin & Luca Sala, 2005. "Monetary Policy in Real Time," NBER Chapters, in: NBER Macroeconomics Annual 2004, Volume 19, pages 161-224, National Bureau of Economic Research, Inc.
    9. de Carvalho, Miguel & Rua, António, 2017. "Real-time nowcasting the US output gap: Singular spectrum analysis at work," International Journal of Forecasting, Elsevier, vol. 33(1), pages 185-198.
    10. Mandler, Martin, 2007. "Decomposing Federal Funds Rate forecast uncertainty using real-time data," MPRA Paper 13498, University Library of Munich, Germany, revised Jan 2009.
    11. Aastveit, Knut Are & Trovik, Tørres, 2014. "Estimating the output gap in real time: A factor model approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 180-193.
    12. Jacobs, Jan P.A.M. & van Norden, Simon, 2011. "Modeling data revisions: Measurement error and dynamics of "true" values," Journal of Econometrics, Elsevier, vol. 161(2), pages 101-109, April.
    13. van Dijk, D.J.C. & Franses, Ph.H.B.F. & Ravazzolo, F., 2007. "Evaluating real-time forecasts in real-time," Econometric Institute Research Papers EI 2007-33, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    14. Eric Ghysels & Casidhe Horan & Emanuel Moench, 2018. "Forecasting through the Rearview Mirror: Data Revisions and Bond Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 31(2), pages 678-714.
    15. Clements, Michael P. & Beatriz Galvão, Ana, 2010. "First announcements and real economic activity," European Economic Review, Elsevier, vol. 54(6), pages 803-817, August.
    16. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    17. Ahsan ul Haq Satti & Wasim Shahid Malik, 2017. "The Unreliability of Output-Gap Estimates in Real Time," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 56(3), pages 193-219.
    18. Clements, Michael P. & Galvao, Ana Beatriz, 2006. "Macroeconomic Forecasting with Mixed Frequency Data: Forecasting US output growth and inflation," Economic Research Papers 269743, University of Warwick - Department of Economics.
    19. Mandler, Martin, 2012. "Decomposing Federal Funds Rate forecast uncertainty using time-varying Taylor rules and real-time data," The North American Journal of Economics and Finance, Elsevier, vol. 23(2), pages 228-245.
    20. George Kapetanios & Tony Yates, 2010. "Estimating time variation in measurement error from data revisions: an application to backcasting and forecasting in dynamic models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(5), pages 869-893.

    More about this item

    Keywords

    database; euro area; real-time; revisions;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access
    • E24 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity
    • E58 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Central Banks and Their Policies

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecb:ecbwps:20101145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Official Publications (email available below). General contact details of provider: https://edirc.repec.org/data/emieude.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.