IDEAS home Printed from https://ideas.repec.org/p/dls/wpaper/0318.html
   My bibliography  Save this paper

Quantile Regression with an Endogenous Misclassified Binary Regressor

Author

Listed:
  • Carlos Lamarche

    (Department of Economics, University of Kentucky)

Abstract

Recent work on the conditional mean model offers the possibility of addressing misreporting of participation in social programs, which is common and has increased in all major surveys. However, researchers who employ quantile regression continue to encounter challenges in terms of estimation and statistical inference. In this work, we propose a simple two-step estimator for a quantile regression model with endogenous misreporting. The identification of the model uses a parametric first stage and information related to participation and misreporting. We show that the estimator is consistent and asymptotically normal. We also establish that a bootstrap procedure is asymptotically valid for approximating the distribution of the estimator. Simulation studies show the small sample behavior of the estimator in comparison with other methods, including a new three-step estimator. Finally, we illustrate the novel approach using U.S. survey data to estimate the intergenerational effect of mother’s participation on welfare on daughter’s adult income.

Suggested Citation

  • Carlos Lamarche, 2023. "Quantile Regression with an Endogenous Misclassified Binary Regressor," CEDLAS, Working Papers 0318, CEDLAS, Universidad Nacional de La Plata.
  • Handle: RePEc:dls:wpaper:0318
    as

    Download full text from publisher

    File URL: http://www.cedlas.econo.unlp.edu.ar/wp/wp-content/uploads/doc_cedlas318.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sukjin Han & Sungwon Lee, 2019. "Estimation in a generalization of bivariate probit models with dummy endogenous regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(6), pages 994-1015, September.
    2. Ma, Lingjie & Koenker, Roger, 2006. "Quantile regression methods for recursive structural equation models," Journal of Econometrics, Elsevier, vol. 134(2), pages 471-506, October.
    3. Frazis, Harley & Loewenstein, Mark A., 2003. "Estimating linear regressions with mismeasured, possibly endogenous, binary explanatory variables," Journal of Econometrics, Elsevier, vol. 117(1), pages 151-178, November.
    4. Roger Koenker, 2017. "Quantile regression 40 years on," CeMMAP working papers CWP36/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Aprajit Mahajan, 2006. "Identification and Estimation of Regression Models with Misclassification," Econometrica, Econometric Society, vol. 74(3), pages 631-665, May.
    6. Bruce D. Meyer & Wallace K. C. Mok & James X. Sullivan, 2009. "The Under-Reporting of Transfers in Household Surveys: Its Nature and Consequences," Working Papers 0903, Harris School of Public Policy Studies, University of Chicago.
    7. Huixia Judy Wang & Leonard A. Stefanski & Zhongyi Zhu, 2012. "Corrected-loss estimation for quantile regression with covariate measurement errors," Biometrika, Biometrika Trust, vol. 99(2), pages 405-421.
    8. Poirier, Dale J., 1980. "Partial observability in bivariate probit models," Journal of Econometrics, Elsevier, vol. 12(2), pages 209-217, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguimkeu, Pierre & Denteh, Augustine & Tchernis, Rusty, 2019. "On the estimation of treatment effects with endogenous misreporting," Journal of Econometrics, Elsevier, vol. 208(2), pages 487-506.
    2. Damian Clarke & Manuel Llorca Jaña & Daniel Pailañir, 2023. "The use of quantile methods in economic history," Historical Methods: A Journal of Quantitative and Interdisciplinary History, Taylor & Francis Journals, vol. 56(2), pages 115-132, April.
    3. Lorenzo Almada & Ian McCarthy & Rusty Tchernis, 2016. "What Can We Learn about the Effects of Food Stamps on Obesity in the Presence of Misreporting?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(4), pages 997-1017.
    4. Akanksha Negi & Digvijay Singh Negi, 2022. "Difference-in-Differences with a Misclassified Treatment," Papers 2208.02412, arXiv.org.
    5. Adele Bergin, 2015. "Employer Changes and Wage Changes: Estimation with Measurement Error in a Binary Variable," LABOUR, CEIS, vol. 29(2), pages 194-223, June.
    6. DiTraglia, Francis J. & García-Jimeno, Camilo, 2019. "Identifying the effect of a mis-classified, binary, endogenous regressor," Journal of Econometrics, Elsevier, vol. 209(2), pages 376-390.
    7. Francis J. DiTraglia & Camilo García-Jimeno, 2017. "Mis-classified, Binary, Endogenous Regressors: Identification and Inference," NBER Working Papers 23814, National Bureau of Economic Research, Inc.
    8. Wossen, Tesfamicheal & Abay, Kibrom A. & Abdoulaye, Tahirou, 2022. "Misperceiving and misreporting input quality: Implications for input use and productivity," Journal of Development Economics, Elsevier, vol. 157(C).
    9. Augustine Denteh & D'esir'e K'edagni, 2022. "Misclassification in Difference-in-differences Models," Papers 2207.11890, arXiv.org, revised Jul 2022.
    10. Francis J. DiTraglia & Camilo Garcia-Jimeno, 2020. "A Framework for Eliciting, Incorporating, and Disciplining Identification Beliefs in Linear Models," Papers 2011.07276, arXiv.org.
    11. Francis DiTraglia & Camilo Garcia-Jimeno, 2015. "On Mis-measured Binary Regressors: New Results And Some Comments on the Literature," PIER Working Paper Archive 15-037, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 02 Nov 2015.
    12. Sulkhan Chavleishvili & Simone Manganelli, 2024. "Forecasting and stress testing with quantile vector autoregression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 66-85, January.
    13. Kasahara, Hiroyuki & Shimotsu, Katsumi, 2022. "Identification Of Regression Models With A Misclassified And Endogenous Binary Regressor," Econometric Theory, Cambridge University Press, vol. 38(6), pages 1117-1139, December.
    14. Denni Tommasi & Arthur Lewbel & Rossella Calvi, 2017. "LATE with Mismeasured or Misspecified Treatment: An application to Women's Empowerment in India," Working Papers ECARES ECARES 2017-27, ULB -- Universite Libre de Bruxelles.
    15. Adele Bergin, 2013. "Job Changes and Wage Changes: Estimation with Measurement Error in a Binary Variable," Economics Department Working Paper Series n240-13.pdf, Department of Economics, National University of Ireland - Maynooth.
    16. Jayeeta Bhattacharya, 2020. "Quantile regression with generated dependent variable and covariates," Papers 2012.13614, arXiv.org.
    17. Roger Koenker, 2017. "Quantile regression 40 years on," CeMMAP working papers 36/17, Institute for Fiscal Studies.
    18. Takahide Yanagi, 2019. "Inference on local average treatment effects for misclassified treatment," Econometric Reviews, Taylor & Francis Journals, vol. 38(8), pages 938-960, September.
    19. Francis DiTraglia & Camilo Garcia-Jimeno, 2015. "On Mis-measured Binary Regressors: New Results And Some Comments on the Literature, Second Version," PIER Working Paper Archive 15-039, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 11 Nov 2015.
    20. Brent Kreider & John V. Pepper & Manan Roy, 2020. "Does The Women, Infants, And Children Program Improve Infant Health Outcomes?," Economic Inquiry, Western Economic Association International, vol. 58(4), pages 1731-1756, October.

    More about this item

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • I32 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - Measurement and Analysis of Poverty

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dls:wpaper:0318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Pacheco (email available below). General contact details of provider: https://edirc.repec.org/data/funlpar.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.