IDEAS home Printed from https://ideas.repec.org/p/diw/diwwpp/dp179.html
   My bibliography  Save this paper

Vorlaufeigenschaften von Ifo-Indikatoren für Westdeutschland

Author

Listed:
  • Ulrich Fritsche

Abstract

Ifo business climate and other Ifo indicators will be investigated to assess its properties. Properties of Ifo indicators either following the old institutional classification or the newer possibility of use classification will be checked against long-term time series according the new statistical classification (NACE or WZ 93). The business cycle component is detrended using an Hodrick Prescott filter. The series are tested for structural stability. The results show structural breaks, but, after the break, the stability of leading properties became stronger. Long-term indicators have no worse stability properties than short-term indicators - that means their use for forecasting is possible. Ifo-Indikatoren werden auf ihre Vorlaufeigenschaften, auf Granger-Kausalität, die Stabilität der Vorlaufbeziehung und einen Strukturbruch untersucht. Da die Ifo-Reihen noch nicht auf die neue Gliederung der amtlichen Statistik (WZ 93) umgestellt wurden, wird erstmals die Eignung der verschiedenen Indikatoren nach institutioneller und Verwendungszweckgliederung gemessen an den umbasierten Produktionsindexreihen nach WZ 93 beurteilt. Ebenfalls neu ist, daß zur Beurteilung der Konjunkturkomponente eine normierte Trendabweichung von einem Hodrick-Prescott-Filter benutzt wurde. Die These der Strukturkonstanz ist zurückzuweisen; die Stabilität der Vorlaufbeziehung in den 90er Jahren ist enger geworden. Die Indikatoren mit längerem Vorlauf (Geschäftserwartungen und Produktionspläne) weisen keine nachweisbar geringere Stabilität auf.

Suggested Citation

  • Ulrich Fritsche, 1999. "Vorlaufeigenschaften von Ifo-Indikatoren für Westdeutschland," Discussion Papers of DIW Berlin 179, DIW Berlin, German Institute for Economic Research.
  • Handle: RePEc:diw:diwwpp:dp179
    as

    Download full text from publisher

    File URL: https://www.diw.de/documents/publikationen/73/diw_01.c.38638.de/dp179.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    2. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    3. Bernd Görzig & Joachim Schintke, 1998. "Lange Zeitreihen der Investitionstätigkeit in den Sektoren des verarbeitenden Gewerbes," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 67(3), pages 165-188.
    4. repec:bla:econom:v:42:y:1975:i:166:p:123-38 is not listed on IDEAS
    5. Elke Muchlinski, 2005. "The Lucas Critique and Keynes Response.Considering the History of Macroeconomics," Macroeconomics 0503019, University Library of Munich, Germany.
    6. Neftici, Salih N., 1982. "Optimal prediction of cyclical downturns," Journal of Economic Dynamics and Control, Elsevier, vol. 4(1), pages 225-241, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert Lehmann, 2023. "The Forecasting Power of the ifo Business Survey," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(1), pages 43-94, March.
    2. Richard Etter & Michael Graff, 2003. "Estimating and Forecasting Production and Orders in Manufacturing Industry from Business Survey Data: Evidence from Switzerland, 1990-2003," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 139(IV), pages 507-533, December.
    3. Schröder, Michael & Hüfner, Felix P., 2002. "Forecasting economic activity in Germany: how useful are sentiment indicators?," ZEW Discussion Papers 02-56, ZEW - Leibniz Centre for European Economic Research.
    4. Hinze, Jörg, 2003. "Prognoseleistung von Frühindikatoren: Die Bedeutung von Frühindikatoren für Konjunkturprognosen - Eine Analyse für Deutschland," HWWA Discussion Papers 236, Hamburg Institute of International Economics (HWWA).
    5. Hüfner, Felix P. & Lahl, David, 2003. "What Determines the ZEW Indicator?," ZEW Discussion Papers 03-48, ZEW - Leibniz Centre for European Economic Research.
    6. Sascha O. Becker & Klaus Wohlrabe, 2008. "European Data Watch: Micro Data at the Ifo Institute for Economic Research – The “Ifo Business Survey”, Usage and Access," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 128(2), pages 307-319.
    7. Benner Joachim & Meier Carsten-Patrick, 2004. "Prognosegüte alternativer Früh Indikatoren für die Konjunktur in Deutschland / Forecasting Performance of Alternative Indicators for the German Economy," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 224(6), pages 639-652, December.
    8. Klaus Abberger & Sascha Becker & Barbara Hofmann & Klaus Wohlrabe, 2007. "Mikrodaten im ifo Institut für Wirtschaftsforschung – Bestand, Verwendung und Zugang," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 1(1), pages 27-42, June.
    9. Hinze, Jorg, 2003. "Prognoseleistung von Fruhindikatoren: Die Bedeutung von Fruhindikatoren fur Konjunk-turprognosen - Eine Analyse fur Deutschland," Discussion Paper Series 26253, Hamburg Institute of International Economics.
    10. Werner Hölzl & Gerhard Schwarz, 2014. "Der WIFO-Konjunkturtest: Methodik und Prognoseeigenschaften," WIFO Monatsberichte (monthly reports), WIFO, vol. 87(12), pages 835-850, December.
    11. Stefan Sauer & Klaus Wohlrabe, 2020. "ifo Handbuch der Konjunkturumfragen," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 88.
    12. Benner, Joachim & Meier, Carsten-Patrick, 2005. "Was leisten Stimmungsindikatoren für die Prognose des realen Bruttoinlandsprodukts in Deutschland? Eine Echtzeit-Analyse," Open Access Publications from Kiel Institute for the World Economy 3725, Kiel Institute for the World Economy (IfW Kiel).
    13. Hüfner, Felix P. & Schröder, Michael, 2001. "Unternehmens- versus Analystenbefragungen: Zum Prognosegehalt von ifo-Geschäftserwartungen und ZEW-Konjunkturerwartungen," ZEW Discussion Papers 01-04, ZEW - Leibniz Centre for European Economic Research.
    14. Christian Seiler, 2009. "Prediction Qualities of the Ifo Indicators on a Temporal Disaggregated German GDP," ifo Working Paper Series 67, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    15. Benner, Joachim & Meier, Carsten-Patrick, 2003. "Prognosegüte alternativer Frühindikatoren für die Konjunktur in Deutschland," Kiel Working Papers 1139, Kiel Institute for the World Economy (IfW Kiel).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duo Qin, 2010. "Econometric Studies of Business Cycles in the History of Econometrics," Working Papers 669, Queen Mary University of London, School of Economics and Finance.
    2. Liow, Kim Hiang & Huang, Yuting, 2018. "The dynamics of volatility connectedness in international real estate investment trusts," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 55(C), pages 195-210.
    3. Michaelides, Panayotis G. & Milios, John G. & Konstantakis, Konstantinos N. & Tarnaras, Panayiotis, 2015. "Quantity-of-money fluctuations and economic instability: empirical evidence for the USA (1958–2006)," MPRA Paper 90145, University Library of Munich, Germany.
    4. Aurélien Goutsmedt & Erich Pinzon-Fuchs & Matthieu Renault & Francesco Sergi, 2015. "Criticizing the Lucas Critique: Macroeconometricians' Response to Robert Lucas," Post-Print halshs-01179114, HAL.
    5. Sleibi, Yacoub & Casalin, Fabrizio & Fazio, Giorgio, 2020. "Bank-specific shocks and aggregate leverage: Empirical evidence from a panel of developed countries," Journal of Financial Stability, Elsevier, vol. 49(C).
    6. Ismail Genc & Abdullah Jubain & Abdullah Al-Mutairi, 2010. "Economic versus financial integration or decoupling between the US and the GCC," Applied Financial Economics, Taylor & Francis Journals, vol. 20(20), pages 1577-1583.
    7. Pinshi, Christian, 2016. "Une perspective macroprudentielle pour la stabilité financière [A macroprudential perspective on financial stability]," MPRA Paper 77905, University Library of Munich, Germany, revised 28 Feb 2017.
    8. Chiou, Wan-Jiun Paul & Knewtson, Heather S. & Nofsinger, John R., 2019. "Paying attention to social media stocks," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 106-119.
    9. David Greasley & Les Oxley, 2010. "Cliometrics And Time Series Econometrics: Some Theory And Applications," Journal of Economic Surveys, Wiley Blackwell, vol. 24(5), pages 970-1042, December.
    10. Ritabrata Bose & Ashima Goyal, 2020. "Disaggregated Indian industrial cycles: A Spectral analysis," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2020-033, Indira Gandhi Institute of Development Research, Mumbai, India.
    11. Peter Bauer & Igor Fedotenkov & Aurelien Genty & Issam Hallak & Peter Harasztosi & David Martinez Turegano & David Nguyen & Nadir Preziosi & Ana Rincon-Aznar & Miguel Sanchez Martinez, 2020. "Productivity in Europe: Trends and drivers in a service-based economy," JRC Research Reports JRC119785, Joint Research Centre.
    12. Matteo Farnè & Angela Montanari, 2022. "A Bootstrap Method to Test Granger-Causality in the Frequency Domain," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 935-966, March.
    13. Konstantakis, Konstantinos N. & Michaelides, Panayotis G., 2017. "Technology and Business Cycles: A Schumpeterian Investigation for the USA," MPRA Paper 80636, University Library of Munich, Germany.
    14. Dutra, Tiago Mota & Dias, José Carlos & Teixeira, João C.A., 2022. "Measuring financial cycles: Empirical evidence for Germany, United Kingdom and United States of America," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 599-630.
    15. Mike Artis & Hans-Martin Krolzig & Juan Toro, 2004. "The European business cycle," Oxford Economic Papers, Oxford University Press, vol. 56(1), pages 1-44, January.
    16. Lucey, Brian & Ren, Boru, 2021. "Does news tone help forecast oil?," Economic Modelling, Elsevier, vol. 104(C).
    17. de Freitas Val, Flávio & Klotzle, Marcelo Cabus & Pinto, Antonio Carlos Figueiredo & Gaglianone, Wagner Piazza, 2017. "Estimating the credibility of Brazilian monetary policy using a Kalman filter approach," Research in International Business and Finance, Elsevier, vol. 41(C), pages 37-53.
    18. Lahiri, Kajal & Yao, Vincent Wenxiong, 2006. "Economic indicators for the US transportation sector," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(10), pages 872-887, December.
    19. Santander Quino, Camila Miriam, 2022. "Ciclos económicos y financieros: Una aproximación empírica para Bolivia," Documentos de trabajo 1/2022, Instituto de Investigaciones Socio-Económicas (IISEC), Universidad Católica Boliviana.
    20. Michael Funke & Harm Bandholz, 2003. "In search of leading indicators of economic activity in Germany," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(4), pages 277-297.

    More about this item

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • L60 - Industrial Organization - - Industry Studies: Manufacturing - - - General
    • L70 - Industrial Organization - - Industry Studies: Primary Products and Construction - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwwpp:dp179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/diwbede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.