IDEAS home Printed from https://ideas.repec.org/p/diw/diwwpp/dp1021.html
   My bibliography  Save this paper

WIATEC: A World Integrated Assessment Model of Global Trade Environment and Climate Change

Author

Listed:
  • Truong P. Truong
  • Claudia Kemfert

Abstract

This paper describes the structure of the World Integrated Assessment model of global Trade, Environmental, and Climate change (WIATEC).The model consists of a multi-regional multi-sectoral core CGE model linked to a climate model. The core CGE is based on an existing global trade and environment model called GTAP-E (Truong, 1999; Burniaux and Truong, 2002). A suite of different and interchangeable 'modules' are then built around this 'core' to enable the model to be able to handle a range of different policy issues such as CO2 emissions, abatement, trading, non-CO2 (CH4 and N2O) emissions, land use land use change and forestry (LULUCF) activities, and changing technologies in the electricity generation sector. The approach which uses a core model structure with different additional modules built around this core structure allows the overall model to be flexible and can be adapted to a range of different policy issues. We illustrate the usefulness of this approach in a policy experiment which looks at the interaction between emissions trading scheme and the promotion of renewable energy targets in the European Union climate policy.

Suggested Citation

  • Truong P. Truong & Claudia Kemfert, 2010. "WIATEC: A World Integrated Assessment Model of Global Trade Environment and Climate Change," Discussion Papers of DIW Berlin 1021, DIW Berlin, German Institute for Economic Research.
  • Handle: RePEc:diw:diwwpp:dp1021
    as

    Download full text from publisher

    File URL: https://www.diw.de/documents/publikationen/73/diw_01.c.357835.de/dp1021.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Huey-Lin & Hertel, Thomas W. & Sohngen, Brent & Ramankutty, Navin, 2005. "Towards An Integrated Land Use Database for Assessing the Potential for Greenhouse Gas Mitigation," Technical Papers 283423, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    2. Böhringer, Christoph & Rutherford, Thomas F. & Tol, Richard S. J., 2009. "The EU 20/20/2020 Targets: An Overview of the EMF22 Assessment," Papers WP325, Economic and Social Research Institute (ESRI).
    3. Paul K. Gorecki & Seán Lyons & Richard S. J. Tol, 2009. "EU Climate Change Policy 2013-2020: Using the Clean Development Mechanism More Effectively," Papers WP299, Economic and Social Research Institute (ESRI).
    4. Claudia Kemfert & Jochen Diekmann, 2009. "Emissions Trading and Promotion of Renewable Energy: We Need Both," Weekly Report, DIW Berlin, German Institute for Economic Research, vol. 5(14), pages 95-100.
    5. Perroni, Carlo & Rutherford, Thomas F, 1998. "A Comparison of the Performance of Flexible Functional Forms for Use in Applied General Equilibrium Modelling," Computational Economics, Springer;Society for Computational Economics, vol. 11(3), pages 245-263, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. 34. Notable Women researchers on Economics
      by Euro American Association EAAEDS in Euro-American Association: World Development on 2018-10-09 19:52:00

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Truong, Truong P. & Hamasaki, Hiroshi, 2021. "Technology substitution in the electricity sector - a top down approach with bottom up characteristics," Energy Economics, Elsevier, vol. 101(C).
    2. Cai, Yiyong & Arora, Vipin, 2015. "Disaggregating electricity generation technologies in CGE models: A revised technology bundle approach with an application to the U.S. Clean Power Plan," Applied Energy, Elsevier, vol. 154(C), pages 543-555.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Böhringer, Christoph & Garcia-Muros, Xaquin & Gonzalez-Eguino, Mikel & Rey, Luis, 2017. "US climate policy: A critical assessment of intensity standards," Energy Economics, Elsevier, vol. 68(S1), pages 125-135.
    2. Tol, Richard S.J., 2012. "A cost–benefit analysis of the EU 20/20/2020 package," Energy Policy, Elsevier, vol. 49(C), pages 288-295.
    3. Hertel, Thomas W. & Tyner, Wallace E. & Birur, Dileep K., 2008. "Biofuels for all? Understanding the Global Impacts of Multinational Mandates," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6526, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    4. Kiuila, O. & Rutherford, T.F., 2013. "Piecewise smooth approximation of bottom–up abatement cost curves," Energy Economics, Elsevier, vol. 40(C), pages 734-742.
    5. Erwin Corong & Thomas Hertel & Robert McDougall & Marinos Tsigas & Dominique van der Mensbrugghe, 2017. "The Standard GTAP Model, version 7," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 2(1), pages 1-119, June.
    6. Hermeling, Claudia & Löschel, Andreas & Mennel, Tim, 2013. "A new robustness analysis for climate policy evaluations: A CGE application for the EU 2020 targets," Energy Policy, Elsevier, vol. 55(C), pages 27-35.
    7. Francesco Bosello & Carlo Orecchia & David A. Raitzer, 2016. "Decarbonization Pathways in Southeast Asia: New Results for Indonesia, Malaysia, Philippines, Thailand and Viet Nam," Working Papers 2016.75, Fondazione Eni Enrico Mattei.
    8. Hess, Sebastian & Surry, Yves R., 2011. "The CDET Profit Function: Could it generate a Parsimonious Agricultural Sector Model?," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114539, European Association of Agricultural Economists.
    9. Hermann Lotze‐Campen & Christoph Müller & Alberte Bondeau & Stefanie Rost & Alexander Popp & Wolfgang Lucht, 2008. "Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach," Agricultural Economics, International Association of Agricultural Economists, vol. 39(3), pages 325-338, November.
    10. Böhringer, Christoph & Lange, Andreas & Rutherford, Thomas F., 2014. "Optimal emission pricing in the presence of international spillovers: Decomposing leakage and terms-of-trade motives," Journal of Public Economics, Elsevier, vol. 110(C), pages 101-111.
    11. Qiu, Cheng & Colson, Gregory & Wetzstein, Michael, 2014. "An ethanol blend wall shift is prone to increase petroleum gasoline demand," Energy Economics, Elsevier, vol. 44(C), pages 160-165.
    12. Gren, Ing-Marie & Carlsson, Mattias & Elofsson, Katarina & Munnich, Miriam, 2012. "Stochastic carbon sinks for combating carbon dioxide emissions in the EU," Energy Economics, Elsevier, vol. 34(5), pages 1523-1531.
    13. Schünemann, Franziska & Heimann, Tobias & Delzeit, Ruth & Söder, Mareike, 2021. "Yet Another Reform of EU Biofuel Policies: Impacts of the Latest Reform of the European Union’s Renewable Energy Directive," 2021 Conference, August 17-31, 2021, Virtual 315399, International Association of Agricultural Economists.
    14. Elmer, Theo & Worall, Mark & Wu, Shenyi & Riffat, Saffa B., 2015. "Fuel cell technology for domestic built environment applications: State of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 913-931.
    15. Böhringer, Christoph & Rutherford, Thomas F., 2013. "Transition towards a low carbon economy: A computable general equilibrium analysis for Poland," Energy Policy, Elsevier, vol. 55(C), pages 16-26.
    16. Zheng, Yan & Zhou, Min & Wen, Fenghua, 2021. "Asymmetric effects of oil shocks on carbon allowance price: Evidence from China," Energy Economics, Elsevier, vol. 97(C).
    17. Karlõševa, Aljona & Nõmmann, Sulev & Nõmmann, Tea & Urbel-Piirsalu, Evelin & Budziński, Wiktor & Czajkowski, Mikołaj & Hanley, Nick, 2016. "Marine trade-offs: Comparing the benefits of off-shore wind farms and marine protected areas," Energy Economics, Elsevier, vol. 55(C), pages 127-134.
    18. Burmeister, Johannes & Peterson, Sonja, 2016. "National climate policies in times of the European Union Emissions Trading System (EU ETS)," Kiel Working Papers 2052, Kiel Institute for the World Economy (IfW Kiel).
    19. Nabil Annabi & John Cockburn & Bernard Decaluwé, 2006. "Functional Forms and Parametrization of CGE Models," Working Papers MPIA 2006-04, PEP-MPIA.
    20. Qi Han & Sahul Reddy Kadarpeta & Bauke de Vries, 2011. "Governance Instruments for Energy Neutral Housing Developments," ERES eres2011_191, European Real Estate Society (ERES).

    More about this item

    Keywords

    Integrated Assessment Model; Technological Change; Climate Policy;
    All these keywords.

    JEL classification:

    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • O38 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Government Policy
    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwwpp:dp1021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/diwbede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.