IDEAS home Printed from https://ideas.repec.org/p/dem/wpaper/wp-2005-018.html
   My bibliography  Save this paper

Aging: damage accumulation versus increasing mortality rate

Author

Listed:
  • Maxim S. Finkelstein

    (Max Planck Institute for Demographic Research, Rostock, Germany)

Abstract

If aging is understood as some process of damage accumulation, it does not necessarily lead to increasing mortality rates. Within the framework of a suggested generalization of the Strehler-Mildwan (1960) model, we show that even for models with monotonically increasing degradation, the mortality rate can still decrease. The de-cline in vitality and functions, as manifestation of aging, is modeled by the monotonically decreasing quality of life function. Using this function, the initial lifetime ran-dom variable with ultimately decreasing mortality rate is ‘weighted’ to result in a new random variable which is already characterized by the increasing rate.

Suggested Citation

  • Maxim S. Finkelstein, 2005. "Aging: damage accumulation versus increasing mortality rate," MPIDR Working Papers WP-2005-018, Max Planck Institute for Demographic Research, Rostock, Germany.
  • Handle: RePEc:dem:wpaper:wp-2005-018
    DOI: 10.4054/MPIDR-WP-2005-018
    as

    Download full text from publisher

    File URL: https://www.demogr.mpg.de/papers/working/wp-2005-018.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.4054/MPIDR-WP-2005-018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James W. Vaupel & Annette Baudisch & Martin Dölling & Deborah A. Roach & Jutta Gampe, 2004. "The case for negative senescence," MPIDR Working Papers WP-2004-002, Max Planck Institute for Demographic Research, Rostock, Germany.
    2. Anatoli Yashin & Ivan Iachine & Alexander Begun, 2000. "Mortality modeling: A review," Mathematical Population Studies, Taylor & Francis Journals, vol. 8(4), pages 305-332.
    3. James Vaupel & Kenneth Manton & Eric Stallard, 1979. "The impact of heterogeneity in individual frailty on the dynamics of mortality," Demography, Springer;Population Association of America (PAA), vol. 16(3), pages 439-454, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. MARK BEBBINGTON & CHIN-DIEW LAI & RIcARDAS ZITIKIS, 2011. "Modelling Deceleration in Senescent Mortality," Mathematical Population Studies, Taylor & Francis Journals, vol. 18(1), pages 18-37.
    2. Hui Zheng, 2014. "Aging in the Context of Cohort Evolution and Mortality Selection," Demography, Springer;Population Association of America (PAA), vol. 51(4), pages 1295-1317, August.
    3. M S Finkelstein, 2008. "Reliability modelling for biological ageing," Journal of Risk and Reliability, , vol. 222(1), pages 1-6, March.
    4. Ting Li & James Anderson, 2013. "Shaping human mortality patterns through intrinsic and extrinsic vitality processes," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 28(12), pages 341-372.
    5. James W. Vaupel, 2009. "Lively Questions for Demographers about Death at Older Ages," Population and Development Review, The Population Council, Inc., vol. 35(2), pages 347-356, June.
    6. Cha, Ji Hwan & Finkelstein, Maxim, 2014. "Some notes on unobserved parameters (frailties) in reliability modeling," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 99-103.
    7. Maxim S. Finkelstein, 2011. "On ordered subpopulations and population mortality at advanced ages," MPIDR Working Papers WP-2011-022, Max Planck Institute for Demographic Research, Rostock, Germany.
    8. Li, Ting & Anderson, James J., 2009. "The vitality model: A way to understand population survival and demographic heterogeneity," Theoretical Population Biology, Elsevier, vol. 76(2), pages 118-131.
    9. Finkelstein, Maxim, 2012. "On ordered subpopulations and population mortality at advanced ages," Theoretical Population Biology, Elsevier, vol. 81(4), pages 292-299.
    10. Hartemink, Nienke & Missov, Trifon I. & Caswell, Hal, 2017. "Stochasticity, heterogeneity, and variance in longevity in human populations," Theoretical Population Biology, Elsevier, vol. 114(C), pages 107-116.
    11. Maxim S. Finkelstein, 2003. "Modeling failure (mortality) rate with a change point," MPIDR Working Papers WP-2003-041, Max Planck Institute for Demographic Research, Rostock, Germany.
    12. Hal Caswell, 2014. "A matrix approach to the statistics of longevity in heterogeneous frailty models," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 31(19), pages 553-592.
    13. Igor Akushevich & Julia S. Kravchenko & Kenneth G. Manton, 2007. "Health‐Based Population Forecasting: Effects of Smoking on Mortality and Fertility," Risk Analysis, John Wiley & Sons, vol. 27(2), pages 467-482, April.
    14. Kenneth Manton & Igor Akushevich & Alexander Kulminski, 2008. "Human Mortality at Extreme Ages: Data from the NLTCS and Linked Medicare Records," Mathematical Population Studies, Taylor & Francis Journals, vol. 15(3), pages 137-159.
    15. Maxim Finkelstein & James W. Vaupel, 2006. "The relative tail of longevity and the mean remaining lifetime," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 14(7), pages 111-138.
    16. James W. Vaupel & Trifon Missov, 2014. "Unobserved population heterogeneity," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 31(22), pages 659-686.
    17. Bagdonavicius, Vilijandas & Nikulin, Mikhail, 2000. "On goodness-of-fit for the linear transformation and frailty models," Statistics & Probability Letters, Elsevier, vol. 47(2), pages 177-188, April.
    18. Yahia Salhi & Pierre-Emmanuel Thérond, 2016. "Age-Specific Adjustment of Graduated Mortality," Working Papers hal-01391285, HAL.
    19. Feehan, Dennis & Wrigley-Field, Elizabeth, 2020. "How do populations aggregate?," SocArXiv 2fkw3, Center for Open Science.
    20. M. K. Lintu & Asha Kamath, 2022. "Performance of recurrent event models on defect proneness data," Annals of Operations Research, Springer, vol. 315(2), pages 2209-2218, August.

    More about this item

    JEL classification:

    • J1 - Labor and Demographic Economics - - Demographic Economics
    • Z0 - Other Special Topics - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dem:wpaper:wp-2005-018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Wilhelm (email available below). General contact details of provider: https://www.demogr.mpg.de/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.