IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/2430.html
   My bibliography  Save this paper

Speculative Bubbles in the Recent AI Boom: Nasdaq and the Magnificent Seven

Author

Listed:
  • Rerotlhe B. Basele

    (Macquarie University)

  • Peter C.B. Phillips

    (Yale University, University of Auckland, Singapore Management University)

  • Shuping Shi

    (Macquarie University)

Abstract

The recent artificial intelligence (AI) boom covers a period of rapid innovation and wide adoption of AI intelligence technologies across diverse industries. These developments have fueled an unprecedented frenzy in the Nasdaq, with AI-focused companies experiencing soaring stock prices that raise concerns about speculative bubbles and real- economy consequences. Against this background the present study investigates the formation of speculative bubbles in the Nasdaq stock market with a specific focus on the so-called ÔMagnificent SevenÕ (Mag-7) individual stocks during the AI boom, spanning the period January 2017 to January 2025. We apply the real time PSY bubble detection methodology of Phillips et al. (2015a,b), while controlling for market and industry factors for individual stocks. Confidence intervals to assess the degree of speculative behavior in asset price dynamics are calculated using the near-unit root approach of Phillips (2023). The findings reveal the presence of speculative bubbles in the Nasdaq stock market and across all Mag-7 stocks. Nvidia and Microsoft experience the longest speculative periods over January 2017 Ð December 2021, while Nvidia and Tesla show the fastest rates of explosive behavior. Speculative bubbles persist in the market and in six of the seven stocks (excluding Apple) from December 2022 to January 2025. Near-unit-root inference indicates mildly explosive dynamics for Nvidia and Tesla (2017Ð2021) and local-to-unity near explosive behavior for all assets in both periods.

Suggested Citation

  • Rerotlhe B. Basele & Peter C.B. Phillips & Shuping Shi, 2025. "Speculative Bubbles in the Recent AI Boom: Nasdaq and the Magnificent Seven," Cowles Foundation Discussion Papers 2430, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:2430
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/2025-03/d2430.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bingduo Yang & Wei Long & Liang Peng & Zongwu Cai, 2020. "Testing the Predictability of U.S. Housing Price Index Returns Based on an IVX-AR Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1598-1619, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zongwu Cai & Haiqiang Chen & Xiaosai Liao, 2020. "A New Robust Inference for Predictive Quantile Regression," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202002, University of Kansas, Department of Economics, revised Feb 2020.
    2. Yang Bai, 2022. "150 Years of Return Predictability Around the World: A Holistic View," Papers 2209.00121, arXiv.org.
    3. Christis Katsouris, 2023. "Predictability Tests Robust against Parameter Instability," Papers 2307.15151, arXiv.org.
    4. Wegener, Christoph & Kruse-Becher, Robinson & Klein, Tony, 2024. "EU ETS Market Expectations and Rational Bubbles," VfS Annual Conference 2024 (Berlin): Upcoming Labor Market Challenges 302359, Verein für Socialpolitik / German Economic Association.
    5. Shuping Shi & Peter C.B. Phillips, 2023. "Diagnosing housing fever with an econometric thermometer," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 159-186, February.
    6. Shuping Shi & Peter C. B. Phillips, 2022. "Econometric Analysis of Asset Price Bubbles," Cowles Foundation Discussion Papers 2331, Cowles Foundation for Research in Economics, Yale University.
    7. Christis Katsouris, 2023. "Limit Theory under Network Dependence and Nonstationarity," Papers 2308.01418, arXiv.org, revised Aug 2023.
    8. Li, Zhenxiong & Yao, Xingzhi & Izzeldin, Marwan, 2023. "On the right jump tail inferred from the VIX market," International Review of Financial Analysis, Elsevier, vol. 86(C).
    9. Hurn, Stan & Shi, Shuping & Wang, Ben, 2022. "Housing networks and driving forces," Journal of Banking & Finance, Elsevier, vol. 134(C).
    10. Liu, Yanbo & Phillips, Peter C.B., 2023. "Robust inference with stochastic local unit root regressors in predictive regressions," Journal of Econometrics, Elsevier, vol. 235(2), pages 563-591.
    11. Christis Katsouris, 2023. "Structural Break Detection in Quantile Predictive Regression Models with Persistent Covariates," Papers 2302.05193, arXiv.org.
    12. Yang, Bingduo & Long, Wei & Yang, Zihui, 2022. "Testing predictability of stock returns under possible bubbles," Journal of Empirical Finance, Elsevier, vol. 68(C), pages 246-260.
    13. Zhan Gao & Ji Hyung Lee & Ziwei Mei & Zhentao Shi, 2024. "Econometric Inference for High Dimensional Predictive Regressions," Papers 2409.10030, arXiv.org, revised Nov 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:2430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.