IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/2347.html
   My bibliography  Save this paper

Boosting the HP Filter for Trending Time Series with Long Range Dependence

Author

Listed:

Abstract

This paper extends recent asymptotic theory developed for the Hodrick Prescott (HP) filter and boosted HP (bHP) filter to long range dependent time series that have fractional Brownian motion (fBM) limit processes after suitable standardization. Under general conditions it is shown that the asymptotic form of the HP filter is a smooth curve, analogous to the finding in Phillips and Jin (2021) for integrated time series and series with deterministic drifts. Boosting the filter using the iterative procedure suggested in Phillips and Shi (2021) leads under well defined rate conditions to a consistent estimate of the fBM limit process or the fBM limit process with an accompanying deterministic drift when that is present. A stopping criterion is used to automate the boosting algorithm, giving a data-determined method for practical implementation. The theory is illustrated in simulations and two real data examples that highlight the differences between simple HP filtering and the use of boosting. The analysis is assisted by employing a uniformly and almost surely convergent trigonometric series representation of fBM.

Suggested Citation

  • Eva Biswas & Farzad Sabzikar & Peter C. B. Phillips, 2022. "Boosting the HP Filter for Trending Time Series with Long Range Dependence," Cowles Foundation Discussion Papers 2347, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:2347
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/2022-12/d2347.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qiying Wang & Yan-Xia Lin & Chandra M. Gulati, 2003. "Strong Approximation for Long Memory Processes with Applications," Journal of Theoretical Probability, Springer, vol. 16(2), pages 377-389, April.
    2. Davidson, James & Hashimzade, Nigar, 2009. "Type I and type II fractional Brownian motions: A reconsideration," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2089-2106, April.
    3. James D. Hamilton, 2018. "Why You Should Never Use the Hodrick-Prescott Filter," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 831-843, December.
    4. Ziwei Mei & Zhentao Shi & Peter C. B. Phillips, 2022. "The boosted HP filter is more general than you might think," Cowles Foundation Discussion Papers 2348, Cowles Foundation for Research in Economics, Yale University.
    5. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    6. Tucker McElroy, 2008. "Exact formulas for the Hodrick-Prescott filter," Econometrics Journal, Royal Economic Society, vol. 11(1), pages 209-217, March.
    7. Szabados, Tamás, 2001. "Strong approximation of fractional Brownian motion by moving averages of simple random walks," Stochastic Processes and their Applications, Elsevier, vol. 92(1), pages 31-60, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hall, Viv B & Thomson, Peter, 2022. "A boosted HP filter for business cycle analysis: evidence from New Zealand’s small open economy," Working Paper Series 9473, Victoria University of Wellington, School of Economics and Finance.
    2. Viv B. Hall & Peter Thomson, 2021. "Does Hamilton’s OLS Regression Provide a “better alternative” to the Hodrick-Prescott Filter? A New Zealand Business Cycle Perspective," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 151-183, November.
    3. Peter C. B. Phillips & Sainan Jin, 2021. "Business Cycles, Trend Elimination, And The Hp Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 469-520, May.
    4. Viv B Hall & Peter Thomson, 2020. "Does Hamilton’s OLS regression provide a “better alternative†to the Hodrick-Prescott filter? A New Zealand business cycle perspective," CAMA Working Papers 2020-71, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    5. Owolabi, Adegboyega O. & Berdiev, Aziz N. & Saunoris, James W., 2022. "Is the shadow economy procyclical or countercyclical over the business cycle? International evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 84(C), pages 257-270.
    6. Maravall, A. & del Rio, A., 2007. "Temporal aggregation, systematic sampling, and the Hodrick-Prescott filter," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 975-998, October.
    7. Schüler, Yves S. & Hiebert, Paul P. & Peltonen, Tuomas A., 2020. "Financial cycles: Characterisation and real-time measurement," Journal of International Money and Finance, Elsevier, vol. 100(C).
    8. Hartwig, Benny & Meinerding, Christoph & Schüler, Yves S., 2021. "Identifying indicators of systemic risk," Journal of International Economics, Elsevier, vol. 132(C).
    9. Morana, Claudio, 2024. "A new macro-financial condition index for the euro area," Econometrics and Statistics, Elsevier, vol. 29(C), pages 64-87.
    10. Alfano, Vincenzo, 2023. "God or good health? Evidence on belief in God in relation to public health during a pandemic," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 107(C).
    11. Atanasov, Victoria, 2021. "Unemployment and aggregate stock returns," Journal of Banking & Finance, Elsevier, vol. 129(C).
    12. Iqbal, Javed & Mahmood, Fatima & Nosheen, Misbah & Wohar, Mark, 2023. "The asymmetric impact of exchange rate misalignment on economic growth of India: An application of Hodrick–Prescott filter technique," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 809-823.
    13. Mutascu, Mihai & Sokic, Alexandre, 2021. "Okun's law in the US: New insights in time and frequency," The Quarterly Review of Economics and Finance, Elsevier, vol. 82(C), pages 207-222.
    14. Duarte, Cláudia & Maria, José R. & Sazedj, Sharmin, 2020. "Trends and cycles under changing economic conditions," Economic Modelling, Elsevier, vol. 92(C), pages 126-146.
    15. Małgorzata Porada Rochoń, 2021. "Convergence in Green Growth as the Key to Fighting Climate Change, 1990–2019," Energies, MDPI, vol. 14(24), pages 1-11, December.
    16. Maarten Dossche & Andrea Gavazzi & Vivien Lewis, 2023. "Labor Adjustment and Productivity in the OECD," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 47, pages 111-130, January.
    17. Sheng Zhang & Yifu Yang & Chengdi Ding & Zhongquan Miao, 2023. "The Impact of International Relations Patterns on China’s Energy Security Supply, Demand, and Sustainable Development: An Exploration of Oil Demand and Sustainability Goals," Sustainability, MDPI, vol. 15(17), pages 1-12, August.
    18. Hodgkinson, Tarah & Andresen, Martin A., 2020. "Show me a man or a woman alone and I'll show you a saint: Changes in the frequency of criminal incidents during the COVID-19 pandemic," Journal of Criminal Justice, Elsevier, vol. 69(C).
    19. Yahya, Farzan & Lee, Chien-Chiang, 2023. "Disentangling the asymmetric effect of financialization on the green output gap," Energy Economics, Elsevier, vol. 125(C).
    20. Alpanda, Sami & Granziera, Eleonora & Zubairy, Sarah, 2021. "State dependence of monetary policy across business, credit and interest rate cycles," European Economic Review, Elsevier, vol. 140(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:2347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.