IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/2254r.html
   My bibliography  Save this paper

When Do Consumers Talk?

Author

Listed:

Abstract

The propensity of consumers to engage in word-of-mouth (WOM) can differ after good versus bad experiences. This can result in positive or negative selection of user-generated reviews. We show how the strength of brand image - determined by the dispersion of consumer beliefs about quality - and the informativeness of good and bad experiences impact the selection of WOM in equilibrium. Our premise is that WOM is costly: Early adopters talk only if their information is instrumental for the receiver's purchase decision. If the brand image is strong, i.e., consumers have close to homogeneous beliefs about quality, then only negative WOM can arise. With a weak brand image, positive WOM can occur if positive experiences are sufficiently informative. We show that our theoretical predictions are consistent with restaurant review data from Yelp.com. A review rating for a national established chain restaurant is almost 1-star lower (on a 5-star scale) than a review rating for a comparable independent restaurant, controlling for various reviewer and restaurant characteristics. Further, negative chain restaurant reviews have more instances of expectation words, indicating agreement over beliefs about the quality, whereas positive reviews of independent restaurants feature disproportionately many novelty words.

Suggested Citation

  • Ishita Chakraborty & Joyee Deb & Aniko Oery, 2020. "When Do Consumers Talk?," Cowles Foundation Discussion Papers 2254R, Cowles Foundation for Research in Economics, Yale University, revised Mar 2021.
  • Handle: RePEc:cwl:cwldpp:2254r
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d22/d2254-r.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dina Mayzlin & Yaniv Dover & Judith Chevalier, 2014. "Promotional Reviews: An Empirical Investigation of Online Review Manipulation," American Economic Review, American Economic Association, vol. 104(8), pages 2421-2455, August.
    2. Arthur Campbell, 2013. "Word-of-Mouth Communication and Percolation in Social Networks," American Economic Review, American Economic Association, vol. 103(6), pages 2466-2498, October.
    3. Nelson, Phillip, 1970. "Information and Consumer Behavior," Journal of Political Economy, University of Chicago Press, vol. 78(2), pages 311-329, March-Apr.
    4. Sherry He & Brett Hollenbeck & Davide Proserpio, 2022. "The Market for Fake Reviews," Marketing Science, INFORMS, vol. 41(5), pages 896-921, September.
    5. Chris Nosko & Steven Tadelis, 2015. "The Limits of Reputation in Platform Markets: An Empirical Analysis and Field Experiment," NBER Working Papers 20830, National Bureau of Economic Research, Inc.
    6. Andrea Galeotti, 2010. "Talking, Searching, And Pricing," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 51(4), pages 1159-1174, November.
    7. Xueming Luo, 2009. "Quantifying the Long-Term Impact of Negative Word of Mouth on Cash Flows and Stock Prices," Marketing Science, INFORMS, vol. 28(1), pages 148-165, 01-02.
    8. Dina Mayzlin & Jiwoong Shin, 2011. "Uninformative Advertising as an Invitation to Search," Marketing Science, INFORMS, vol. 30(4), pages 666-685, July.
    9. Imke Reimers & Joel Waldfogel, 2021. "Digitization and Pre-purchase Information: The Causal and Welfare Impacts of Reviews and Crowd Ratings," American Economic Review, American Economic Association, vol. 111(6), pages 1944-1971, June.
    10. Leduc, Matt V. & Jackson, Matthew O. & Johari, Ramesh, 2017. "Pricing and referrals in diffusion on networks," Games and Economic Behavior, Elsevier, vol. 104(C), pages 568-594.
    11. Ishita Chakraborty & Minkyung Kim & K. Sudhir, 2019. "Attribute Sentiment Scoring With Online Text Reviews : Accounting for Language Structure and Attribute Self-Selection," Cowles Foundation Discussion Papers 2176, Cowles Foundation for Research in Economics, Yale University.
    12. Eyal Biyalogorsky & Eitan Gerstner & Barak Libai, 2001. "Customer Referral Management: Optimal Reward Programs," Marketing Science, INFORMS, vol. 20(1), pages 82-95, August.
    13. Duncan Sheppard Gilchrist & Emily Glassberg Sands, 2016. "Something to Talk About: Social Spillovers in Movie Consumption," Journal of Political Economy, University of Chicago Press, vol. 124(5), pages 1339-1382.
    14. Monic Sun, 2012. "How Does the Variance of Product Ratings Matter?," Management Science, INFORMS, vol. 58(4), pages 696-707, April.
    15. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    16. Hollenbeck, Brett, 2018. "Online Reputation Mechanisms and the Decreasing Value of Chain Affliation," MPRA Paper 91573, University Library of Munich, Germany.
    17. Stephan Seiler & Song Yao & Wenbo Wang, 2017. "Does Online Word of Mouth Increase Demand? (And How?) Evidence from a Natural Experiment," Marketing Science, INFORMS, vol. 36(6), pages 838-861, November.
    18. Onishi, Hiroshi & Manchanda, Puneet, 2012. "Marketing activity, blogging and sales," International Journal of Research in Marketing, Elsevier, vol. 29(3), pages 221-234.
    19. Pradeep K. Chintagunta & Shyam Gopinath & Sriram Venkataraman, 2010. "The Effects of Online User Reviews on Movie Box Office Performance: Accounting for Sequential Rollout and Aggregation Across Local Markets," Marketing Science, INFORMS, vol. 29(5), pages 944-957, 09-10.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ishita Chakraborty & Joyee Deb & Aniko Oery, 2020. "When Do Consumers Talk?," Cowles Foundation Discussion Papers 2254R2, Cowles Foundation for Research in Economics, Yale University, revised Jun 2022.
    2. Ishita Chakraborty & Joyee Deb & Aniko Oery, 2020. "When Do Consumers Talk?," Cowles Foundation Discussion Papers 2254R3, Cowles Foundation for Research in Economics, Yale University, revised Feb 2023.
    3. Yuichiro Kamada & Aniko Öry, 2020. "Contracting with Word-of-Mouth Management," Management Science, INFORMS, vol. 66(11), pages 5094-5107, November.
    4. Hui, Xiang & Klein, Tobias & Stahl, Konrad, 2022. "Learning from Online Ratings," CEPR Discussion Papers 17006, C.E.P.R. Discussion Papers.
    5. Elias Carroni & Paolo Pin & Simone Righi, 2020. "Bring a Friend! Privately or Publicly?," Management Science, INFORMS, vol. 66(5), pages 2269-2290, May.
    6. Sherry He & Brett Hollenbeck & Davide Proserpio, 2022. "The Market for Fake Reviews," Marketing Science, INFORMS, vol. 41(5), pages 896-921, September.
    7. Garrett P. Sonnier & Leigh McAlister & Oliver J. Rutz, 2011. "A Dynamic Model of the Effect of Online Communications on Firm Sales," Marketing Science, INFORMS, vol. 30(4), pages 702-716, July.
    8. Brett Hollenbeck & Sridhar Moorthy & Davide Proserpio, 2019. "Advertising Strategy in the Presence of Reviews: An Empirical Analysis," Marketing Science, INFORMS, vol. 38(5), pages 793-811, September.
    9. Ko, Eunhee Emily & Bowman, Douglas, 2023. "Suspicious online product reviews: An empirical analysis of brand and product characteristics using Amazon data," International Journal of Research in Marketing, Elsevier, vol. 40(4), pages 898-911.
    10. Alexei Parahonyak & Nick Vikander, 2024. "Strategic Use of Product Delays to Shape Word-of-Mouth Communication," Economics Series Working Papers 1032, University of Oxford, Department of Economics.
    11. Tommaso Bondi, 2019. "Alone, Together. Product Discovery Through Consumer Ratings," Working Papers 19-09, NET Institute.
    12. Shyam Gopinath & Jacquelyn S. Thomas & Lakshman Krishnamurthi, 2014. "Investigating the Relationship Between the Content of Online Word of Mouth, Advertising, and Brand Performance," Marketing Science, INFORMS, vol. 33(2), pages 241-258, March.
    13. Greiff, Matthias & Paetzel, Fabian, 2020. "Information about average evaluations spurs cooperation: An experiment on noisy reputation systems," Journal of Economic Behavior & Organization, Elsevier, vol. 180(C), pages 334-356.
    14. Danish H. Saifee & Zhiqiang (Eric) Zheng & Indranil R. Bardhan & Atanu Lahiri, 2020. "Are Online Reviews of Physicians Reliable Indicators of Clinical Outcomes? A Focus on Chronic Disease Management," Information Systems Research, INFORMS, vol. 31(4), pages 1282-1300, December.
    15. Sungsik Park & Woochoel Shin & Jinhong Xie, 2021. "The Fateful First Consumer Review," Marketing Science, INFORMS, vol. 40(3), pages 481-507, May.
    16. Lingfang (Ivy) Li & Steven Tadelis & Xiaolan Zhou, 2020. "Buying reputation as a signal of quality: Evidence from an online marketplace," RAND Journal of Economics, RAND Corporation, vol. 51(4), pages 965-988, December.
    17. Atabek Atayev & Maarten Janssen, 2024. "Information Acquisition And Diffusion In Markets," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 65(2), pages 729-753, May.
    18. Pauwels, Koen & Aksehirli, Zeynep & Lackman, Andrew, 2016. "Like the ad or the brand? Marketing stimulates different electronic word-of-mouth content to drive online and offline performance," International Journal of Research in Marketing, Elsevier, vol. 33(3), pages 639-655.
    19. Antioco, Michael & Coussement, Kristof, 2018. "Misreading of consumer dissatisfaction in online product reviews: Writing style as a cause for bias," International Journal of Information Management, Elsevier, vol. 38(1), pages 301-310.
    20. Dominik Gutt, 2018. "In the Eye of the Beholder? Empirically Decomposing Different Economic Implications of the Online Rating Variance," Working Papers Dissertations 40, Paderborn University, Faculty of Business Administration and Economics.

    More about this item

    Keywords

    Brand image; Costly communication; Recommendation engines; Review platforms; Word of mouth;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:2254r. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.