IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws104125.html
   My bibliography  Save this paper

Comparing sample and plug-in moments in asymmetric Garch Models

Author

Listed:
  • Rodríguez, Mª José

Abstract

The adequacy of GARCH models is often analyzed by comparing plug-in and sample kurtosis and autocorrelations of squares. We analyse the finite sample suitability of this comparison and show that it is not appropiate in general.

Suggested Citation

  • Rodríguez, Mª José, 2010. "Comparing sample and plug-in moments in asymmetric Garch Models," DES - Working Papers. Statistics and Econometrics. WS ws104125, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws104125
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/a2bc9e8f-5d03-477d-8afc-e09927dd85f2/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ana Pérez & Esther Ruiz, 2003. "Properties of the Sample Autocorrelations of Nonlinear Transformations in Long-Memory Stochastic Volatility Models," Journal of Financial Econometrics, Oxford University Press, vol. 1(3), pages 420-444.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruiz Esther & Pérez Ana, 2012. "Maximally Autocorrelated Power Transformations: A Closer Look at the Properties of Stochastic Volatility Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(3), pages 1-33, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zacharias Psaradakis & Marián Vávra, 2019. "Portmanteau tests for linearity of stationary time series," Econometric Reviews, Taylor & Francis Journals, vol. 38(2), pages 248-262, February.
    2. Veiga, Helena, 2006. "A two factor long memory stochastic volatility model," DES - Working Papers. Statistics and Econometrics. WS ws061303, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Ruiz, Esther & Veiga, Helena, 2008. "Modelling long-memory volatilities with leverage effect: A-LMSV versus FIEGARCH," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2846-2862, February.
    4. Ruiz Esther & Pérez Ana, 2012. "Maximally Autocorrelated Power Transformations: A Closer Look at the Properties of Stochastic Volatility Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(3), pages 1-33, September.
    5. Grivas, Charisios, 2021. "An Automatic Portmanteau Test For Nonlinear Dependence," MPRA Paper 114312, University Library of Munich, Germany, revised 22 Aug 2022.
    6. Broto, Carmen & Ruiz, Esther, 2006. "Unobserved component models with asymmetric conditional variances," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2146-2166, May.
    7. Antonis Demos, 2023. "Statistical Properties of Two Asymmetric Stochastic Volatility in Mean Models," DEOS Working Papers 2303, Athens University of Economics and Business.
    8. Dalla, Violetta, 2015. "Power transformations of absolute returns and long memory estimation," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 1-18.

    More about this item

    Keywords

    Kurtosis;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws104125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.