IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws090101.html
   My bibliography  Save this paper

Clustering and classifying images with local and global variability

Author

Listed:
  • Giuliodori, Andrea

Abstract

A procedure for clustering and classifying images determined by three classification variables is presented. A measure of global variability based on the singular value decomposition of the image matrices, and two average measures of local variability based on spatial correlation and spatial changes. The performance of the procedure is compared using three different databases.

Suggested Citation

  • Giuliodori, Andrea, 2009. "Clustering and classifying images with local and global variability," DES - Working Papers. Statistics and Econometrics. WS ws090101, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws090101
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/5c46b01c-e407-44e8-b378-d6e71456d153/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peña, Daniel & Rodríguez, Julio, 2003. "Descriptive measures of multivariate scatter and linear dependence," Journal of Multivariate Analysis, Elsevier, vol. 85(2), pages 361-374, May.
    2. Marron, J.S. & Todd, Michael J. & Ahn, Jeongyoun, 2007. "Distance-Weighted Discrimination," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1267-1271, December.
    3. repec:cte:wsrepe:ws041003 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yugo Nakayama & Kazuyoshi Yata & Makoto Aoshima, 2020. "Bias-corrected support vector machine with Gaussian kernel in high-dimension, low-sample-size settings," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1257-1286, October.
    2. Hayley Randall & Andreas Artemiou & Xingye Qiao, 2021. "Sufficient dimension reduction based on distance‐weighted discrimination," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1186-1211, December.
    3. Sudhir Varma, 2020. "Blind estimation and correction of microarray batch effect," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-15, April.
    4. Anil K. Ghosh & Munmun Biswas, 2016. "Distribution-free high-dimensional two-sample tests based on discriminating hyperplanes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 525-547, September.
    5. Jung, Sungkyu, 2018. "Continuum directions for supervised dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 27-43.
    6. Bolivar-Cime, A. & Marron, J.S., 2013. "Comparison of binary discrimination methods for high dimension low sample size data," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 108-121.
    7. Jang, Hyun Jung & Shin, Seung Jun & Artemiou, Andreas, 2023. "Principal weighted least square support vector machine: An online dimension-reduction tool for binary classification," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    8. Xiaosun Lu & J. S. Marron & Perry Haaland, 2014. "Object-Oriented Data Analysis of Cell Images," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 548-559, June.
    9. Makoto Aoshima & Kazuyoshi Yata, 2019. "High-Dimensional Quadratic Classifiers in Non-sparse Settings," Methodology and Computing in Applied Probability, Springer, vol. 21(3), pages 663-682, September.
    10. Sungkyu Jung & Xingye Qiao, 2014. "A statistical approach to set classification by feature selection with applications to classification of histopathology images," Biometrics, The International Biometric Society, vol. 70(3), pages 536-545, September.
    11. Jorge Gonzalez-Chapela, 2005. "On Measuring Convergence in the Use of Time," MEA discussion paper series 05096, Munich Center for the Economics of Aging (MEA) at the Max Planck Institute for Social Law and Social Policy.
    12. Dariush Najarzadeh, 2019. "Testing equality of standardized generalized variances of k multivariate normal populations with arbitrary dimensions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(4), pages 593-623, December.
    13. Makoto Aoshima & Kazuyoshi Yata, 2019. "Distance-based classifier by data transformation for high-dimension, strongly spiked eigenvalue models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 473-503, June.
    14. Luis J. Álvarez & Maria Dolores Gadea & Ana Gómez‐Loscos, 2021. "Inflation comovements in advanced economies: Facts and drivers," The World Economy, Wiley Blackwell, vol. 44(2), pages 485-509, February.
    15. Marron, J.S., 2017. "Big Data in context and robustness against heterogeneity," Econometrics and Statistics, Elsevier, vol. 2(C), pages 73-80.
    16. Ishii, Aki & Yata, Kazuyoshi & Aoshima, Makoto, 2022. "Geometric classifiers for high-dimensional noisy data," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    17. Niladri Roy Chowdhury & Dianne Cook & Heike Hofmann & Mahbubul Majumder & Eun-Kyung Lee & Amy Toth, 2015. "Using visual statistical inference to better understand random class separations in high dimension, low sample size data," Computational Statistics, Springer, vol. 30(2), pages 293-316, June.
    18. Iliopoulos, George, 2008. "UMVU estimation of the ratio of powers of normal generalized variances under correlation," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1051-1069, July.
    19. Makoto Aoshima & Kazuyoshi Yata, 2014. "A distance-based, misclassification rate adjusted classifier for multiclass, high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(5), pages 983-1010, October.
    20. Luis J. Álvarez & Ana Gómez-Loscos & María Dolores Gadea, 2019. "Inflation interdependence in advanced economies," Working Papers 1920, Banco de España.

    More about this item

    Keywords

    Images;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws090101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.