IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws084613.html
   My bibliography  Save this paper

On identifiability of MAP processes

Author

Listed:
  • Ramírez Cobo, Josefa

Abstract

Two types of transitions can be found in the Markovian Arrival process or MAP: with and without arrivals. In transient transitions the chain jumps from one state to another with no arrival; in effective transitions, a single arrival occurs. We assume that in practice, only arrival times are observed in a MAP. This leads us to define and study the Effective Markovian Arrival process or E-MAP. In this work we define identifiability of MAPs in terms of equivalence between the corresponding E-MAPs and study conditions under which two sets of parameters induce identical laws for the observable process, in the case of 2 and 3-states MAP. We illustrate and discuss our results with examples.

Suggested Citation

  • Ramírez Cobo, Josefa, 2008. "On identifiability of MAP processes," DES - Working Papers. Statistics and Econometrics. WS ws084613, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws084613
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/20dcee14-e6a1-4de1-a635-577295dea09c/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leroux, Brian G., 1992. "Maximum-likelihood estimation for hidden Markov models," Stochastic Processes and their Applications, Elsevier, vol. 40(1), pages 127-143, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramírez Cobo, Josefa, 2009. "Non-identifiability of the two state Markovian Arrival process," DES - Working Papers. Statistics and Econometrics. WS ws097121, Universidad Carlos III de Madrid. Departamento de Estadística.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. María Luz Gámiz & Nikolaos Limnios & Mari Carmen Segovia-García, 2023. "The continuous-time hidden Markov model based on discretization. Properties of estimators and applications," Statistical Inference for Stochastic Processes, Springer, vol. 26(3), pages 525-550, October.
    2. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
    3. Genon-Catalot, Valentine, 2003. "A non-linear explicit filter," Statistics & Probability Letters, Elsevier, vol. 61(2), pages 145-154, January.
    4. Jörn Dannemann & Hajo Holzmann, 2008. "Likelihood Ratio Testing for Hidden Markov Models Under Non‐standard Conditions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(2), pages 309-321, June.
    5. Massimo Guidolin, 2013. "Markov switching models in asset pricing research," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 1, pages 3-44, Edward Elgar Publishing.
    6. Pierre Guérin & Danilo Leiva-Leon & Massimiliano Marcellino, 2020. "Markov-Switching Three-Pass Regression Filter," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 285-302, April.
    7. Ahmed Bel Hadj Ayed & Gr'egoire Loeper & Fr'ed'eric Abergel, 2015. "Forecasting trends with asset prices," Papers 1504.03934, arXiv.org, revised Apr 2015.
    8. Massimo Guidolin & Stuart Hyde, 2008. "Equity portfolio diversification under time-varying predictability and comovements: evidence from Ireland, the US, and the UK," Working Papers 2008-005, Federal Reserve Bank of St. Louis.
    9. Kasahara, Hiroyuki & Shimotsu, Katsumi, 2019. "Asymptotic properties of the maximum likelihood estimator in regime switching econometric models," Journal of Econometrics, Elsevier, vol. 208(2), pages 442-467.
    10. Douc, Randal & Olsson, Jimmy & Roueff, François, 2020. "Posterior consistency for partially observed Markov models," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 733-759.
    11. James Y. Dai & Peter B. Gilbert & Benoît R. Mâsse, 2012. "Partially Hidden Markov Model for Time-Varying Principal Stratification in HIV Prevention Trials," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 52-65, March.
    12. Antonio Punzo & Salvatore Ingrassia & Antonello Maruotti, 2021. "Multivariate hidden Markov regression models: random covariates and heavy-tailed distributions," Statistical Papers, Springer, vol. 62(3), pages 1519-1555, June.
    13. Guidolin, Massimo & Ono, Sadayuki, 2006. "Are the dynamic linkages between the macroeconomy and asset prices time-varying?," Journal of Economics and Business, Elsevier, vol. 58(5-6), pages 480-518.
    14. Paolo Giudici & Tobias Ryden & Pierre Vandekerkhove, 2000. "Likelihood-Ratio Tests for Hidden Markov Models," Biometrics, The International Biometric Society, vol. 56(3), pages 742-747, September.
    15. Driffill, John & Sola, Martin & Kenc, Turalay & Spagnolo, Fabio, 2004. "On Model Selection and Markov Switching: A Empirical Examination of Term Structure Models with Regime Shifts," CEPR Discussion Papers 4165, C.E.P.R. Discussion Papers.
    16. Härdle, Wolfgang Karl & Okhrin, Ostap & Wang, Weining, 2012. "HMM in dynamic HAC models," SFB 649 Discussion Papers 2012-001, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    17. Francesco Chincoli & Massimo Guidolin, 2017. "Linear and nonlinear predictability in investment style factors: multivariate evidence," Journal of Asset Management, Palgrave Macmillan, vol. 18(6), pages 476-509, October.
    18. Kenwin Maung, 2021. "Estimating high-dimensional Markov-switching VARs," Papers 2107.12552, arXiv.org.
    19. Arielle Beyaert & Juan rez-Castej, 2000. "Switching regime models in the Spanish inter-bank market," The European Journal of Finance, Taylor & Francis Journals, vol. 6(2), pages 93-112.
    20. Lacour, Claire, 2008. "Adaptive estimation of the transition density of a particular hidden Markov chain," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 787-814, May.

    More about this item

    Keywords

    Batch Markovian Arrival process;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws084613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.