IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v66y1997i1p79-96.html
   My bibliography  Save this article

On recursive estimation for hidden Markov models

Author

Listed:
  • Rydén, Tobias

Abstract

Hidden Markov models (HMMs) have during the last decade become a widespread tool for modelling sequences of dependent random variables. In this paper we consider a recursive estimator for HMMs based on the m-dimensional distribution of the process and show that this estimator converges to the set of stationary points of the corresponding Kullback-Leibler information. We also investigate averaging in this recursive scheme and show that conditional on convergence to the true parameter, and provided m is chosen large enough, the averaged estimator is close to optimal.

Suggested Citation

  • Rydén, Tobias, 1997. "On recursive estimation for hidden Markov models," Stochastic Processes and their Applications, Elsevier, vol. 66(1), pages 79-96, February.
  • Handle: RePEc:eee:spapps:v:66:y:1997:i:1:p:79-96
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(96)00114-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rainer Schwabe & Harro Walk, 1996. "On a stochastic approximation procedure based on averaging," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 44(1), pages 165-180, December.
    2. Ma, D.-J. & Makowski, A.M. & Shwartz, A., 1990. "Stochastic approximations for finite-state Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 35(1), pages 27-45, June.
    3. Leroux, Brian G., 1992. "Maximum-likelihood estimation for hidden Markov models," Stochastic Processes and their Applications, Elsevier, vol. 40(1), pages 127-143, February.
    4. Schwabe, R., 1986. "Strong representation of an adaptive stochastic approximation procedure," Stochastic Processes and their Applications, Elsevier, vol. 23(1), pages 115-130, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Driffill, John & Sola, Martin & Kenc, Turalay & Spagnolo, Fabio, 2004. "On Model Selection and Markov Switching: A Empirical Examination of Term Structure Models with Regime Shifts," CEPR Discussion Papers 4165, C.E.P.R. Discussion Papers.
    2. Tadić, Vladislav Z.B. & Doucet, Arnaud, 2020. "Stability of optimal filter higher-order derivatives," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 4808-4858.
    3. Driffill John & Kenc Turalay & Sola Martin & Spagnolo Fabio, 2009. "The Effects of Different Parameterizations of Markov-Switching in a CIR Model of Bond Pricing," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(1), pages 1-24, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. María Luz Gámiz & Nikolaos Limnios & Mari Carmen Segovia-García, 2023. "The continuous-time hidden Markov model based on discretization. Properties of estimators and applications," Statistical Inference for Stochastic Processes, Springer, vol. 26(3), pages 525-550, October.
    2. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
    3. Genon-Catalot, Valentine, 2003. "A non-linear explicit filter," Statistics & Probability Letters, Elsevier, vol. 61(2), pages 145-154, January.
    4. Jörn Dannemann & Hajo Holzmann, 2008. "Likelihood Ratio Testing for Hidden Markov Models Under Non‐standard Conditions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(2), pages 309-321, June.
    5. Massimo Guidolin, 2013. "Markov switching models in asset pricing research," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 1, pages 3-44, Edward Elgar Publishing.
    6. Pierre Guérin & Danilo Leiva-Leon & Massimiliano Marcellino, 2020. "Markov-Switching Three-Pass Regression Filter," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 285-302, April.
    7. Ahmed Bel Hadj Ayed & Gr'egoire Loeper & Fr'ed'eric Abergel, 2015. "Forecasting trends with asset prices," Papers 1504.03934, arXiv.org, revised Apr 2015.
    8. Massimo Guidolin & Stuart Hyde, 2008. "Equity portfolio diversification under time-varying predictability and comovements: evidence from Ireland, the US, and the UK," Working Papers 2008-005, Federal Reserve Bank of St. Louis.
    9. Kasahara, Hiroyuki & Shimotsu, Katsumi, 2019. "Asymptotic properties of the maximum likelihood estimator in regime switching econometric models," Journal of Econometrics, Elsevier, vol. 208(2), pages 442-467.
    10. Douc, Randal & Olsson, Jimmy & Roueff, François, 2020. "Posterior consistency for partially observed Markov models," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 733-759.
    11. James Y. Dai & Peter B. Gilbert & Benoît R. Mâsse, 2012. "Partially Hidden Markov Model for Time-Varying Principal Stratification in HIV Prevention Trials," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 52-65, March.
    12. Antonio Punzo & Salvatore Ingrassia & Antonello Maruotti, 2021. "Multivariate hidden Markov regression models: random covariates and heavy-tailed distributions," Statistical Papers, Springer, vol. 62(3), pages 1519-1555, June.
    13. Guidolin, Massimo & Ono, Sadayuki, 2006. "Are the dynamic linkages between the macroeconomy and asset prices time-varying?," Journal of Economics and Business, Elsevier, vol. 58(5-6), pages 480-518.
    14. Paolo Giudici & Tobias Ryden & Pierre Vandekerkhove, 2000. "Likelihood-Ratio Tests for Hidden Markov Models," Biometrics, The International Biometric Society, vol. 56(3), pages 742-747, September.
    15. Driffill, John & Sola, Martin & Kenc, Turalay & Spagnolo, Fabio, 2004. "On Model Selection and Markov Switching: A Empirical Examination of Term Structure Models with Regime Shifts," CEPR Discussion Papers 4165, C.E.P.R. Discussion Papers.
    16. Beggs, Alan, 2022. "Reference points and learning," Journal of Mathematical Economics, Elsevier, vol. 100(C).
    17. Härdle, Wolfgang Karl & Okhrin, Ostap & Wang, Weining, 2012. "HMM in dynamic HAC models," SFB 649 Discussion Papers 2012-001, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    18. Francesco Chincoli & Massimo Guidolin, 2017. "Linear and nonlinear predictability in investment style factors: multivariate evidence," Journal of Asset Management, Palgrave Macmillan, vol. 18(6), pages 476-509, October.
    19. Kenwin Maung, 2021. "Estimating high-dimensional Markov-switching VARs," Papers 2107.12552, arXiv.org.
    20. Arielle Beyaert & Juan rez-Castej, 2000. "Switching regime models in the Spanish inter-bank market," The European Journal of Finance, Taylor & Francis Journals, vol. 6(2), pages 93-112.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:66:y:1997:i:1:p:79-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.