IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws013220.html
   My bibliography  Save this paper

Optimal control of partially observable linear quadratic systems with asymmetric observation errors

Author

Listed:
  • Romera, Rosario

Abstract

This paper deals with the optimal quadratic control problem for non-Gaussian discrete-time stochastic systems. Our main result gives explicit solutions for the optimal quadratic control problem for partially observable dynamic linear systems with asymmetric observation errors. For this purpose an asymmetric version of the Kalman filter based on asymmetric least squares estimation is used. We illustrate the applicability of our approach with numerical results.

Suggested Citation

  • Romera, Rosario, 2001. "Optimal control of partially observable linear quadratic systems with asymmetric observation errors," DES - Working Papers. Statistics and Econometrics. WS ws013220, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws013220
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/becce590-646c-428c-813f-0ba977200733/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leffrancois, Pierre, 1989. "Allowing for asymmetry in forecast errors : Results from a Monte-Carlo study," International Journal of Forecasting, Elsevier, vol. 5(1), pages 99-110.
    2. Rosario Romera, 1997. "On the optimal control of stochastic linear systems with contaminated partial observations," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 5(1), pages 143-157, June.
    3. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belkacem Abdous & Bruno Remillard, 1995. "Relating quantiles and expectiles under weighted-symmetry," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(2), pages 371-384, June.
    2. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    3. Chen, Yu & Ma, Mengyuan & Sun, Hongfang, 2023. "Statistical inference for extreme extremile in heavy-tailed heteroscedastic regression model," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 142-162.
    4. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    5. Said Khalil, 2022. "Expectile-based capital allocation," Working Papers hal-03816525, HAL.
    6. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    7. Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2014. "Causality and predictability in distribution: The ethanol–food price relation revisited," Energy Economics, Elsevier, vol. 42(C), pages 152-160.
    8. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    9. Qinyu Wu & Fan Yang & Ping Zhang, 2023. "Conditional generalized quantiles based on expected utility model and equivalent characterization of properties," Papers 2301.12420, arXiv.org.
    10. Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021. "A unified framework for efficient estimation of general treatment models," Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
    11. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    12. N. Salvati & N. Tzavidis & M. Pratesi & R. Chambers, 2012. "Small area estimation via M-quantile geographically weighted regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 1-28, March.
    13. Masayuki Hirukawa & Mari Sakudo, 2016. "Testing Symmetry of Unknown Densities via Smoothing with the Generalized Gamma Kernels," Econometrics, MDPI, vol. 4(2), pages 1-27, June.
    14. Gabriela Ciuperca, 2022. "Real-time detection of a change-point in a linear expectile model," Statistical Papers, Springer, vol. 63(4), pages 1323-1367, August.
    15. Burdejova, P. & Härdle, W. & Kokoszka, P. & Xiong, Q., 2017. "Change point and trend analyses of annual expectile curves of tropical storms," Econometrics and Statistics, Elsevier, vol. 1(C), pages 101-117.
    16. Alqahtani, Faisal & Hamdi, Besma & Hammoudeh, Shawkat, 2021. "The effects of global factors on the Saudi Arabia equity market by firm size: Implications for risk management based on quantile analysis and frequency domain causality," Journal of Multinational Financial Management, Elsevier, vol. 61(C).
    17. Fabio Busetti & Michele Caivano & Davide Delle Monache, 2021. "Domestic and Global Determinants of Inflation: Evidence from Expectile Regression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(4), pages 982-1001, August.
    18. Zhang, Feipeng & Xu, Yixiong & Fan, Caiyun, 2023. "Nonparametric inference of expectile-based value-at-risk for financial time series with application to risk assessment," International Review of Financial Analysis, Elsevier, vol. 90(C).
    19. Wolff Rodney & Yao Qiwei & Tong Howell, 2004. "Statistical Tests for Lyapunov Exponents of Deterministic Systems," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-19, May.
    20. Bellini, Fabio & Klar, Bernhard & Müller, Alfred & Rosazza Gianin, Emanuela, 2014. "Generalized quantiles as risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 41-48.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws013220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.