IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/6220.html
   My bibliography  Save this paper

The identification of multiple outliers in arima models

Author

Listed:
  • Sánchez, María Jesús

Abstract

The presence of outliers causes biases in the estimation of ARIMA models. In this work we present a procedure for detecting outliers and obtaining a robust estimator of the parameters in univariate ARIMA time series models. There are three main problems in the existing procedures for detecting outliers in ARIMA time series models. The first one is the confusion between level shifts and innovative outliers when a level shift is present in a time series. The procedure ineludes a possible solution to avoid this problem based on not comparing the statistics for level shifts and innovative outliers together, because the critical values under the null hypothesis of no outliers can be quite different. The second problem is the biased estimation of the initial parameter values. In the existing procedures, this initial estimation is done under the hypotheses of no outliers in the data, which may lead to begin the search for outliers using a very biased set of parameters and, therefore, these procedures may fail. In order to solve this problem, we use two measures of influence in the first stage of the proposed procedure; one measure for individually influential observations, and an additional measure for level shifts and sequences of outliers. The third problem is masking. This problem appears when there is a sequence of additive outliers, because the usual one by one outlier identification method may fail in the identification of sorne of the members of the group. The proposed procedure seems to solve the aforementioned problems and obtains food parameter estimates when the time series has isolated outliers and/or multiple adjacent outliers. The performance of the proposed procedure is analyzed and an example is shown.

Suggested Citation

  • Sánchez, María Jesús, 1997. "The identification of multiple outliers in arima models," DES - Working Papers. Statistics and Econometrics. WS 6220, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:6220
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/4000f530-7851-4997-affc-17566c06f062/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert E. McCulloch & Ruey S. Tsay, 1994. "Bayesian Analysis Of Autoregressive Time Series Via The Gibbs Sampler," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(2), pages 235-250, March.
    2. Pena, Daniel, 1990. "Influential Observations in Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 235-241, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Justel, A. & Tsay, Ruey S., 1998. "Detection of outlier patches in autoregressive time series," DES - Working Papers. Statistics and Econometrics. WS 9821, Universidad Carlos III de Madrid. Departamento de Estadística.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baragona, Roberto & Battaglia, Francesco & Calzini, Claudio, 2001. "Genetic algorithms for the identification of additive and innovation outliers in time series," Computational Statistics & Data Analysis, Elsevier, vol. 37(1), pages 1-12, July.
    2. Justel, A. & Tsay, Ruey S., 1998. "Detection of outlier patches in autoregressive time series," DES - Working Papers. Statistics and Econometrics. WS 9821, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Myroslav Pidkuyko, 2014. "Dynamics of Consumption and Dividends over the Business Cycle," CERGE-EI Working Papers wp522, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    4. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    5. Barnett, Glen & Kohn, Robert & Sheather, Simon, 1996. "Bayesian estimation of an autoregressive model using Markov chain Monte Carlo," Journal of Econometrics, Elsevier, vol. 74(2), pages 237-254, October.
    6. McCoy, E. J. & Stephens, D. A., 2004. "Bayesian time series analysis of periodic behaviour and spectral structure," International Journal of Forecasting, Elsevier, vol. 20(4), pages 713-730.
    7. H. Glendinning, Richard, 2001. "Selecting sub-set autoregressions from outlier contaminated data," Computational Statistics & Data Analysis, Elsevier, vol. 36(2), pages 179-207, April.
    8. Min-Hsien Chiang & Ray Yeutien Chou & Li-Min Wang, 2016. "Outlier Detection in the Lognormal Logarithmic Conditional Autoregressive Range Model," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(1), pages 126-144, February.
    9. Francisco JA Cysneiros, 2018. "Symmetric Regression Model for Temporal Data," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 5(2), pages 44-45, February.
    10. Amélie Charles & Olivier Darné & Laurent Ferrara, 2018. "Does The Great Recession Imply The End Of The Great Moderation? International Evidence," Economic Inquiry, Western Economic Association International, vol. 56(2), pages 745-760, April.
    11. Victor M. Guerrero & Daniel Peña, 1995. "Linear Combination of Information in Time Series Analysis," Working Papers 9507, Centro de Investigacion Economica, ITAM.
    12. N. K. Unnikrishnan, 2004. "Bayesian Subset Model Selection for Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(5), pages 671-690, September.
    13. Tsay, Ruey S. & Pankratz, Alan E., 1998. "Outliers in multivariate time series," DES - Working Papers. Statistics and Econometrics. WS 6285, Universidad Carlos III de Madrid. Departamento de Estadística.
    14. Maravall, Agustín, 1992. "Missing observations and additive outliers in time series models," UC3M Working papers. Economics 2888, Universidad Carlos III de Madrid. Departamento de Economía.
    15. repec:cte:wsrepe:4516 is not listed on IDEAS
    16. Gómez, Víctor & Maravall, Agustín, 1993. "Computing missing values in time series," DES - Working Papers. Statistics and Econometrics. WS 3737, Universidad Carlos III de Madrid. Departamento de Estadística.
    17. Bauer, Marcus & Gather, Ursula & Imhoff, Michael, 1999. "The identification of multiple outliers in online monitoring data," Technical Reports 1999,29, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    18. Greyserman, Alex & Jones, Douglas H. & Strawderman, William E., 2006. "Portfolio selection using hierarchical Bayesian analysis and MCMC methods," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 669-678, February.
    19. Vinicius Q. S. Maior & Francisco José A. Cysneiros, 2018. "SYMARMA: a new dynamic model for temporal data on conditional symmetric distribution," Statistical Papers, Springer, vol. 59(1), pages 75-97, March.
    20. Juan Laborda & Sonia Ruano & Ignacio Zamanillo, 2023. "Multi-Country and Multi-Horizon GDP Forecasting Using Temporal Fusion Transformers," Mathematics, MDPI, vol. 11(12), pages 1-26, June.
    21. Galeano, Pedro & Tsay, Ruey S., 2004. "Outlier detection in multivariate time series via projection pursuit," DES - Working Papers. Statistics and Econometrics. WS ws044211, Universidad Carlos III de Madrid. Departamento de Estadística.

    More about this item

    Keywords

    Equivalent configurations;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:6220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.