IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/10456.html
   My bibliography  Save this paper

Assessing measurement invariance in questionnaires within latent trait models using item response theory

Author

Listed:
  • Maydeu Olivares, Alberto
  • D'Zurilla, Thomas J.
  • Morera, Osvaldo

Abstract

Using questionnaires or inventories. researchers often perform mean comparisons between different populations (e.g .• males vs. females) in order to draw inferences about actual differences in the constructs being measured. However, such comparisons are not meaningful unless the assessments obtained in each of the populations are conmesurable or invariant across populations. Most researchers simply assume that measuremnt invariance holds. However, the extent to which this assumption is a reasonable one for specific measures and specific populations should be tested empirically. Using item response theory, the present study shows how gender measurement invariance can be determined when. as is most common, a psychological construct is assessed by means of a questionnaire or inventory composed of categorical items. To illustrate our method, the Positive Problem Orientation scale of the Social Problem-Solving Inventory-Revised (D' Zurilla. Nezu & Maydeu-Olivares, 1996) was assessed and found to be reasonably gender invariant. whereas the Negative Problem Orientation scale was not.

Suggested Citation

  • Maydeu Olivares, Alberto & D'Zurilla, Thomas J. & Morera, Osvaldo, 1996. "Assessing measurement invariance in questionnaires within latent trait models using item response theory," DES - Working Papers. Statistics and Econometrics. WS 10456, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:10456
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/bae1d4d9-4d06-4bd1-bc2f-97550d2f6321/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Thissen & Lynne Steinberg, 1986. "A taxonomy of item response models," Psychometrika, Springer;The Psychometric Society, vol. 51(4), pages 567-577, December.
    2. Geoff Masters, 1982. "A rasch model for partial credit scoring," Psychometrika, Springer;The Psychometric Society, vol. 47(2), pages 149-174, June.
    3. Yoshio Takane & Jan Leeuw, 1987. "On the relationship between item response theory and factor analysis of discretized variables," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 393-408, September.
    4. William Meredith, 1993. "Measurement invariance, factor analysis and factorial invariance," Psychometrika, Springer;The Psychometric Society, vol. 58(4), pages 525-543, December.
    5. R. Darrell Bock, 1972. "Estimating item parameters and latent ability when responses are scored in two or more nominal categories," Psychometrika, Springer;The Psychometric Society, vol. 37(1), pages 29-51, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dylan Molenaar, 2015. "Heteroscedastic Latent Trait Models for Dichotomous Data," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 625-644, September.
    2. Timothy R. Johnson & Daniel M. Bolt, 2010. "On the Use of Factor-Analytic Multinomial Logit Item Response Models to Account for Individual Differences in Response Style," Journal of Educational and Behavioral Statistics, , vol. 35(1), pages 92-114, February.
    3. repec:jss:jstsof:35:i12 is not listed on IDEAS
    4. David Magis, 2015. "A Note on the Equivalence Between Observed and Expected Information Functions With Polytomous IRT Models," Journal of Educational and Behavioral Statistics, , vol. 40(1), pages 96-105, February.
    5. Anders Skrondal & Sophia Rabe‐Hesketh, 2007. "Latent Variable Modelling: A Survey," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 712-745, December.
    6. Michal Abrahamowicz & James Ramsay, 1992. "Multicategorical spline model for item response theory," Psychometrika, Springer;The Psychometric Society, vol. 57(1), pages 5-27, March.
    7. David Magis, 2015. "A Note on Weighted Likelihood and Jeffreys Modal Estimation of Proficiency Levels in Polytomous Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 200-204, March.
    8. David Magis & Norman Verhelst, 2017. "On the Finiteness of the Weighted Likelihood Estimator of Ability," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 637-647, September.
    9. Albert Maydeu-Olivares & Harry Joe, 2006. "Limited Information Goodness-of-fit Testing in Multidimensional Contingency Tables," Psychometrika, Springer;The Psychometric Society, vol. 71(4), pages 713-732, December.
    10. Singh, Jagdip, 2004. "Tackling measurement problems with Item Response Theory: Principles, characteristics, and assessment, with an illustrative example," Journal of Business Research, Elsevier, vol. 57(2), pages 184-208, February.
    11. Stefano Noventa & Andrea Spoto & Jürgen Heller & Augustin Kelava, 2019. "On a Generalization of Local Independence in Item Response Theory Based on Knowledge Space Theory," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 395-421, June.
    12. Michelle M. LaMar, 2018. "Markov Decision Process Measurement Model," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 67-88, March.
    13. Hua-Hua Chang, 1996. "The asymptotic posterior normality of the latent trait for polytomous IRT models," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 445-463, September.
    14. Bas Hemker & Klaas Sijtsma & Ivo Molenaar & Brian Junker, 1996. "Polytomous IRT models and monotone likelihood ratio of the total score," Psychometrika, Springer;The Psychometric Society, vol. 61(4), pages 679-693, December.
    15. Minjeong Jeon & Frank Rijmen & Sophia Rabe-Hesketh, 2013. "Modeling Differential Item Functioning Using a Generalization of the Multiple-Group Bifactor Model," Journal of Educational and Behavioral Statistics, , vol. 38(1), pages 32-60, February.
    16. Victor B Arias & Daniel E Nuñez & Agustín Martínez-Molina & Fernando P Ponce & Benito Arias, 2016. "Hierarchy and Psychometric Properties of ADHD Symptoms in Spanish Children: An Application of the Graded Response Model," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-17, October.
    17. Irini Moustaki & Martin Knott, 2000. "Generalized latent trait models," Psychometrika, Springer;The Psychometric Society, vol. 65(3), pages 391-411, September.
    18. Yingbin Zhang & Zhaoxi Yang & Yehui Wang, 2022. "The Impact of Extreme Response Style on the Mean Comparison of Two Independent Samples," SAGE Open, , vol. 12(2), pages 21582440221, June.
    19. Yang Liu & Weimeng Wang, 2022. "Semiparametric Factor Analysis for Item-Level Response Time Data," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 666-692, June.
    20. Ulf Böckenholt, 2001. "Mixed-effects analyses of rank-ordered data," Psychometrika, Springer;The Psychometric Society, vol. 66(1), pages 45-62, March.
    21. Leonardo Grilli & Carla Rampichini, 2019. "Discussion of ‘The class of CUB models: statistical foundations, inferential issues and empirical evidence’ by Domenico Piccolo and Rosaria Simone," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 459-463, September.

    More about this item

    Keywords

    Categorical data;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:10456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.