IDEAS home Printed from https://ideas.repec.org/p/crs/wpaper/2017-70.html
   My bibliography  Save this paper

Linear wavelet estimation of the derivatives of a regression function based on biased data

Author

Listed:
  • Yogendra P. Chaubey

    (Department of Mathematics and Statistics, Concordia University)

  • Christophe Chesneau

    (Université de Caen; LMNO)

  • Fabien Navarro

    (CREST; ENSAI)

Abstract

This paper deals with the problem of estimating the derivatives of a regression function based on biased data. We develop two different linear wavelet estimators according to the knowledge of the ”biased density” of the design. The new estimators are analyzed with respect to their Lp risk with p>1 over Besov balls. Fast polynomial rates of convergence are obtained.

Suggested Citation

  • Yogendra P. Chaubey & Christophe Chesneau & Fabien Navarro, 2017. "Linear wavelet estimation of the derivatives of a regression function based on biased data," Working Papers 2017-70, Center for Research in Economics and Statistics.
  • Handle: RePEc:crs:wpaper:2017-70
    as

    Download full text from publisher

    File URL: http://crest.science/RePEc/wpstorage/2017-70.pdf
    File Function: CREST working paper version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christophe Chesneau & Esmaeil Shirazi, 2014. "Nonparametric Wavelet Regression Based on Biased Data," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 43(13), pages 2642-2658, July.
    2. José Cristóbal & José Alcalá, 2001. "An overview of nonparametric contributions to the problem of functional estimation from biased data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(2), pages 309-332, December.
    3. Ahmad, Ibrahim A., 1995. "On multivariate kernel estimation for samples from weighted distributions," Statistics & Probability Letters, Elsevier, vol. 22(2), pages 121-129, February.
    4. Marianna Pensky & Brani Vidakovic, 2001. "On Non-Equally Spaced Wavelet Regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(4), pages 681-690, December.
    5. Yogendra P. Chaubey & Christophe Chesneau & Esmaeil Shirazi, 2013. "Wavelet-based estimation of regression function for dependent biased data under a given random design," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(1), pages 53-71, March.
    6. J. Cristóbal & J. Ojeda & J. Alcalá, 2004. "Confidence bands in nonparametric regression with length biased data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(3), pages 475-496, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junke Kou & Youming Liu, 2018. "Wavelet regression estimations with strong mixing data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(4), pages 667-688, December.
    2. Kou, Junke & Liu, Youming, 2016. "An extension of Chesneau’s theorem," Statistics & Probability Letters, Elsevier, vol. 108(C), pages 23-32.
    3. J. Ojeda & J. Cristóbal & J. Alcalá, 2008. "A bootstrap approach to model checking for linear models under length-biased data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(3), pages 519-543, September.
    4. Fujii, Toru & Konishi, Sadanori, 2006. "Nonlinear regression modeling via regularized wavelets and smoothing parameter selection," Journal of Multivariate Analysis, Elsevier, vol. 97(9), pages 2023-2033, October.
    5. Christophe Chesneau & Fabien Navarro, 2017. "On the pointwise mean squared error of a multidimensional term-by-term thresholding wavelet estimator," Working Papers 2017-68, Center for Research in Economics and Statistics.
    6. Jia Chen & Junke Kou, 2023. "Pointwise Estimation of Anisotropic Regression Functions Using Wavelets with Data-Driven Selection Rule," Mathematics, MDPI, vol. 12(1), pages 1-10, December.
    7. Christophe Chesneau, 2014. "A Note on Wavelet Estimation of the Derivatives of a Regression Function in a Random Design Setting," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2014, pages 1-8, April.
    8. Wu, Colin O., 1997. "A Cross-Validation Bandwidth Choice for Kernel Density Estimates with Selection Biased Data," Journal of Multivariate Analysis, Elsevier, vol. 61(1), pages 38-60, April.
    9. J. Cristóbal & J. Ojeda & J. Alcalá, 2004. "Confidence bands in nonparametric regression with length biased data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(3), pages 475-496, September.
    10. Ying Qing Chen, 2010. "Semiparametric Regression in Size-Biased Sampling," Biometrics, The International Biometric Society, vol. 66(1), pages 149-158, March.
    11. Colin Wu & Andrew Mao, 1996. "Minimax kernels for density estimation with biased data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 48(3), pages 451-467, September.
    12. de Uña-Álvarez, Jacobo, 2003. "Large sample results under biased sampling when covariables are present," Statistics & Probability Letters, Elsevier, vol. 63(3), pages 287-293, July.
    13. Wu, Colin O., 1997. "The effects of kernel choices in density estimation with biased data," Statistics & Probability Letters, Elsevier, vol. 34(4), pages 373-383, June.
    14. Huijun Guo & Youming Liu, 2019. "Regression estimation under strong mixing data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 553-576, June.
    15. Maarten Jansen & Guy P. Nason & B. W. Silverman, 2009. "Multiscale methods for data on graphs and irregular multidimensional situations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 97-125, January.
    16. Christophe Chesneau & Jalal Fadili, 2012. "Adaptive wavelet estimation of a function in an indirect regression model," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(1), pages 25-46, January.
    17. Huijun Guo & Youming Liu, 2017. "Strong consistency of wavelet estimators for errors-in-variables regression model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 121-144, February.
    18. J. Ojeda & W. González-Manteiga & J. Cristóbal, 2015. "Testing regression models with selection-biased data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(3), pages 411-436, June.
    19. Michael Levine, 2019. "Robust functional estimation in the multivariate partial linear model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 743-770, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crs:wpaper:2017-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General (email available below). General contact details of provider: https://edirc.repec.org/data/crestfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.