IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v10y2001i2p309-332.html
   My bibliography  Save this article

An overview of nonparametric contributions to the problem of functional estimation from biased data

Author

Listed:
  • José Cristóbal
  • José Alcalá

Abstract

No abstract is available for this item.

Suggested Citation

  • José Cristóbal & José Alcalá, 2001. "An overview of nonparametric contributions to the problem of functional estimation from biased data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(2), pages 309-332, December.
  • Handle: RePEc:spr:testjl:v:10:y:2001:i:2:p:309-332
    DOI: 10.1007/BF02595700
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02595700
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02595700?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Colin O., 1997. "A Cross-Validation Bandwidth Choice for Kernel Density Estimates with Selection Biased Data," Journal of Multivariate Analysis, Elsevier, vol. 61(1), pages 38-60, April.
    2. Gang Li & Jing Qin, 1998. "Semiparametric likelihood‐based inference for biased and truncated data when the total sample size is known," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(1), pages 243-254.
    3. Biao Zhang, 2000. "M‐estimation Under a Two‐Sample Semiparametric Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(2), pages 263-280, June.
    4. Horváth Lajos, 1985. "Estimation From A Length-Biased Distribution," Statistics & Risk Modeling, De Gruyter, vol. 3(1-2), pages 91-114, February.
    5. Klein, Roger & Sherman, Robert, 1997. "Estimating new product demand from biased survey data," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 53-76.
    6. Colin Wu & Andrew Mao, 1996. "Minimax kernels for density estimation with biased data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 48(3), pages 451-467, September.
    7. Horowitz, Joel L, 1996. "Semiparametric Estimation of a Regression Model with an Unknown Transformation of the Dependent Variable," Econometrica, Econometric Society, vol. 64(1), pages 103-137, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. Ojeda & J. Cristóbal & J. Alcalá, 2008. "A bootstrap approach to model checking for linear models under length-biased data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(3), pages 519-543, September.
    2. Yogendra P. Chaubey & Christophe Chesneau & Fabien Navarro, 2017. "Linear wavelet estimation of the derivatives of a regression function based on biased data," Working Papers 2017-70, Center for Research in Economics and Statistics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joo Heon Park & Douglas L. MacLachlan, 2008. "Estimating Willingness to Pay with Exaggeration Bias-Corrected Contingent Valuation Method," Marketing Science, INFORMS, vol. 27(4), pages 691-698, 07-08.
    2. Dauxois, Jean-Yves & Guilloux, Agathe, 2008. "Nonparametric inference under competing risks and selection-biased sampling," Journal of Multivariate Analysis, Elsevier, vol. 99(4), pages 589-605, April.
    3. Sokbae Lee, 2006. "Identification of a competing risks model with unknown transformations of latent failure times," Biometrika, Biometrika Trust, vol. 93(4), pages 996-1002, December.
    4. Huazhen Lin & Ling Zhou & Chunhong Li & Yi Li, 2014. "Semiparametric transformation models for semicompeting survival data," Biometrics, The International Biometric Society, vol. 70(3), pages 599-607, September.
    5. Chiappori, Pierre-Andre & Komunjer, Ivana, 2008. "Correct Specification and Identification of Nonparametric Transformation Models," University of California at San Diego, Economics Working Paper Series qt4v12m2rg, Department of Economics, UC San Diego.
    6. Bonev, Petyo, 2020. "Nonparametric identification in nonseparable duration models with unobserved heterogeneity," Economics Working Paper Series 2005, University of St. Gallen, School of Economics and Political Science.
    7. Yao Luo & Isabelle Perrigne & Quang Vuong, 2018. "Structural Analysis of Nonlinear Pricing," Journal of Political Economy, University of Chicago Press, vol. 126(6), pages 2523-2568.
    8. Esmerelda A. Ramalho & Richard Smith, 2003. "Discrete choice non-response," CeMMAP working papers 07/03, Institute for Fiscal Studies.
    9. Zhang, Biao, 2006. "Prospective and retrospective analyses under logistic regression models," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 211-230, January.
    10. Gorgens, Tue & Horowitz, Joel L., 1999. "Semiparametric estimation of a censored regression model with an unknown transformation of the dependent variable," Journal of Econometrics, Elsevier, vol. 90(2), pages 155-191, June.
    11. Krief, Jerome M., 2017. "Direct instrumental nonparametric estimation of inverse regression functions," Journal of Econometrics, Elsevier, vol. 201(1), pages 95-107.
    12. Gorgens, T., 1999. "Semiparametric Estimation of Single-Index Transition Intensities," Papers 99-25, Carleton - School of Public Administration.
    13. Khan, Shakeeb, 2001. "Two-stage rank estimation of quantile index models," Journal of Econometrics, Elsevier, vol. 100(2), pages 319-355, February.
    14. Irene Botosaru & Chris Muris, 2017. "Binarization for panel models with fixed effects," CeMMAP working papers 31/17, Institute for Fiscal Studies.
    15. Wang, Tao & Xu, Pei-Rong & Zhu, Li-Xing, 2012. "Non-convex penalized estimation in high-dimensional models with single-index structure," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 221-235.
    16. Coppejans, Mark, 2001. "Estimation of the binary response model using a mixture of distributions estimator (MOD)," Journal of Econometrics, Elsevier, vol. 102(2), pages 231-269, June.
    17. Hausman, Jerry A. & Woutersen, Tiemen, 2014. "Estimating a semi-parametric duration model without specifying heterogeneity," Journal of Econometrics, Elsevier, vol. 178(P1), pages 114-131.
    18. Vanhems, Anne & Van Keilegom, Ingrid, 2011. "Semiparametric transformation model with endogeneity: a control function approach," LIDAM Discussion Papers ISBA 2011011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. Alois Stutzer & Rafael Lalive, 2004. "The Role of Social Work Norms in Job Searching and Subjective Well-Being," Journal of the European Economic Association, MIT Press, vol. 2(4), pages 696-719, June.
    20. Vanhems, Anne & Van Keilegom, Ingrid, 2019. "Estimation Of A Semiparametric Transformation Model In The Presence Of Endogeneity," Econometric Theory, Cambridge University Press, vol. 35(1), pages 73-110, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:10:y:2001:i:2:p:309-332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.