IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v53y2001i4p681-690.html
   My bibliography  Save this article

On Non-Equally Spaced Wavelet Regression

Author

Listed:
  • Marianna Pensky
  • Brani Vidakovic

Abstract

No abstract is available for this item.

Suggested Citation

  • Marianna Pensky & Brani Vidakovic, 2001. "On Non-Equally Spaced Wavelet Regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(4), pages 681-690, December.
  • Handle: RePEc:spr:aistmt:v:53:y:2001:i:4:p:681-690
    DOI: 10.1023/A:1014640632666
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1014640632666
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1014640632666?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antoniadis, A. & Grégoire, G. & Vial, P., 1997. "Random design wavelet curve smoothing," Statistics & Probability Letters, Elsevier, vol. 35(3), pages 225-232, October.
    2. Antoniadis, Anestis & Dinh Tuan Pham, 1998. "Wavelet regression for random or irregular design," Computational Statistics & Data Analysis, Elsevier, vol. 28(4), pages 353-369, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fujii, Toru & Konishi, Sadanori, 2006. "Nonlinear regression modeling via regularized wavelets and smoothing parameter selection," Journal of Multivariate Analysis, Elsevier, vol. 97(9), pages 2023-2033, October.
    2. Christophe Chesneau & Jalal Fadili, 2012. "Adaptive wavelet estimation of a function in an indirect regression model," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(1), pages 25-46, January.
    3. Maarten Jansen & Guy P. Nason & B. W. Silverman, 2009. "Multiscale methods for data on graphs and irregular multidimensional situations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 97-125, January.
    4. Christophe Chesneau, 2014. "A Note on Wavelet Estimation of the Derivatives of a Regression Function in a Random Design Setting," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2014, pages 1-8, April.
    5. Yogendra P. Chaubey & Christophe Chesneau & Fabien Navarro, 2017. "Linear wavelet estimation of the derivatives of a regression function based on biased data," Working Papers 2017-70, Center for Research in Economics and Statistics.
    6. Michael Levine, 2019. "Robust functional estimation in the multivariate partial linear model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 743-770, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kleijnen, Jack P. C., 2005. "An overview of the design and analysis of simulation experiments for sensitivity analysis," European Journal of Operational Research, Elsevier, vol. 164(2), pages 287-300, July.
    2. Le Zhang & Qiang Yang, 2020. "Investigation of the Design and Fault Prediction Method for an Abrasive Particle Sensor Used in Wind Turbine Gearbox," Energies, MDPI, vol. 13(2), pages 1-13, January.
    3. Jack P. C. Kleijnen & Susan M. Sanchez & Thomas W. Lucas & Thomas M. Cioppa, 2005. "State-of-the-Art Review: A User’s Guide to the Brave New World of Designing Simulation Experiments," INFORMS Journal on Computing, INFORMS, vol. 17(3), pages 263-289, August.
    4. Fujii, Toru & Konishi, Sadanori, 2006. "Nonlinear regression modeling via regularized wavelets and smoothing parameter selection," Journal of Multivariate Analysis, Elsevier, vol. 97(9), pages 2023-2033, October.
    5. Antoniadis, Anestis & Bigot, Jéremie & Gijbels, Irène, 2007. "Penalized wavelet monotone regression," Statistics & Probability Letters, Elsevier, vol. 77(16), pages 1608-1621, October.
    6. Luz M. Gómez & Rogério F. Porto & Pedro A. Morettin, 2021. "Nonparametric regression with warped wavelets and strong mixing processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(6), pages 1203-1228, December.
    7. A. Antoniadis, 1997. "Wavelets in statistics: A review," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 6(2), pages 97-130, August.
    8. Maarten Jansen & Guy P. Nason & B. W. Silverman, 2009. "Multiscale methods for data on graphs and irregular multidimensional situations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 97-125, January.
    9. Christophe Chesneau & Jalal Fadili, 2012. "Adaptive wavelet estimation of a function in an indirect regression model," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(1), pages 25-46, January.
    10. Kleijnen, J.P.C., 2004. "Design and Analysis of Monte Carlo Experiments," Discussion Paper 2004-17, Tilburg University, Center for Economic Research.
    11. Antoniadis, Anestis & Sapatinas, Theofanis, 2003. "Wavelet methods for continuous-time prediction using Hilbert-valued autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 87(1), pages 133-158, October.
    12. F. Comte & Y. Rozenholc, 2004. "A new algorithm for fixed design regression and denoising," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(3), pages 449-473, September.
    13. Michel Delecroix & Camelia Protopopescu, 2000. "Are Regression Series Estimators Efficient in Practice? A Computational Comparison Study," Computational Statistics, Springer, vol. 15(4), pages 511-529, December.
    14. Amato, U. & Antoniadis, A. & De Feis, I., 2006. "Dimension reduction in functional regression with applications," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2422-2446, May.
    15. Michael Levine, 2019. "Robust functional estimation in the multivariate partial linear model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 743-770, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:53:y:2001:i:4:p:681-690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.