IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v84y2022i2p321-350.html
   My bibliography  Save this article

Non‐reversible parallel tempering: A scalable highly parallel MCMC scheme

Author

Listed:
  • Saifuddin Syed
  • Alexandre Bouchard‐Côté
  • George Deligiannidis
  • Arnaud Doucet

Abstract

Parallel tempering (PT) methods are a popular class of Markov chain Monte Carlo schemes used to sample complex high‐dimensional probability distributions. They rely on a collection of N interacting auxiliary chains targeting tempered versions of the target distribution to improve the exploration of the state space. We provide here a new perspective on these highly parallel algorithms and their tuning by identifying and formalizing a sharp divide in the behaviour and performance of reversible versus non‐reversible PT schemes. We show theoretically and empirically that a class of non‐reversible PT methods dominates its reversible counterparts and identify distinct scaling limits for the non‐reversible and reversible schemes, the former being a piecewise‐deterministic Markov process and the latter a diffusion. These results are exploited to identify the optimal annealing schedule for non‐reversible PT and to develop an iterative scheme approximating this schedule. We provide a wide range of numerical examples supporting our theoretical and methodological contributions. The proposed methodology is applicable to sample from a distribution π with a density L with respect to a reference distribution π0 and compute the normalizing constant ∫Ldπ0. A typical use case is when π0 is a prior distribution, L a likelihood function and π the corresponding posterior distribution.

Suggested Citation

  • Saifuddin Syed & Alexandre Bouchard‐Côté & George Deligiannidis & Arnaud Doucet, 2022. "Non‐reversible parallel tempering: A scalable highly parallel MCMC scheme," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 321-350, April.
  • Handle: RePEc:bla:jorssb:v:84:y:2022:i:2:p:321-350
    DOI: 10.1111/rssb.12464
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12464
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12464?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436, June.
    2. Bierkens, Joris & Bouchard-Côté, Alexandre & Doucet, Arnaud & Duncan, Andrew B. & Fearnhead, Paul & Lienart, Thibaut & Roberts, Gareth & Vollmer, Sebastian J., 2018. "Piecewise deterministic Markov processes for scalable Monte Carlo on restricted domains," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 148-154.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. G. J. Senarathne & C. C. Drovandi & J. M. McGree, 2020. "Bayesian sequential design for Copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 454-478, June.
    2. Arnaud Dufays, 2016. "Evolutionary Sequential Monte Carlo Samplers for Change-Point Models," Econometrics, MDPI, vol. 4(1), pages 1-33, March.
    3. James Martin & Ajay Jasra & Emma McCoy, 2013. "Inference for a class of partially observed point process models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 413-437, June.
    4. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    5. Mark Bognanni & John Zito, 2019. "Sequential Bayesian Inference for Vector Autoregressions with Stochastic Volatility," Working Papers 19-29, Federal Reserve Bank of Cleveland.
    6. Brignone, Riccardo & Gonzato, Luca & Lütkebohmert, Eva, 2023. "Efficient Quasi-Bayesian Estimation of Affine Option Pricing Models Using Risk-Neutral Cumulants," Journal of Banking & Finance, Elsevier, vol. 148(C).
    7. Lee Anthony & Caron Francois & Doucet Arnaud & Holmes Chris, 2012. "Bayesian Sparsity-Path-Analysis of Genetic Association Signal using Generalized t Priors," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(2), pages 1-31, January.
    8. Edward Herbst & Frank Schorfheide, 2014. "Sequential Monte Carlo Sampling For Dsge Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1073-1098, November.
    9. Beirne, John & Villafuerte, James & Zhang, Bryan (ed.), 2022. "Fintech and COVID-19: Impacts, Challenges, and Policy Priorities for Asia," ADBI Books, Asian Development Bank Institute, number 29, Décembre.
    10. Nguyen, Hoang & Virbickaitė, Audronė, 2023. "Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models," Energy Economics, Elsevier, vol. 124(C).
    11. M Ludkin & C Sherlock, 2023. "Hug and hop: a discrete-time, nonreversible Markov chain Monte Carlo algorithm," Biometrika, Biometrika Trust, vol. 110(2), pages 301-318.
    12. Naoki Awaya & Yasuhiro Omori, 2021. "Particle Rolling MCMC with Double-Block Sampling ," CIRJE F-Series CIRJE-F-1175, CIRJE, Faculty of Economics, University of Tokyo.
    13. Xiaohong Chen & Timothy M. Christensen & Elie Tamer, 2018. "Monte Carlo Confidence Sets for Identified Sets," Econometrica, Econometric Society, vol. 86(6), pages 1965-2018, November.
    14. James Hodgson & Adam M. Johansen & Murray Pollock, 2022. "Unbiased Simulation of Rare Events in Continuous Time," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 2123-2148, September.
    15. Dufays, Arnaud & Rombouts, Jeroen V.K., 2020. "Relevant parameter changes in structural break models," Journal of Econometrics, Elsevier, vol. 217(1), pages 46-78.
    16. Ettmeier, Stephanie & Kriwoluzky, Alexander, 2019. "Active, or passive? Revisiting the role of fiscal policy in the Great Inflation," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203609, Verein für Socialpolitik / German Economic Association.
    17. Nicolas Chopin & Mathieu Gerber, 2017. "Sequential quasi-Monte Carlo: Introduction for Non-Experts, Dimension Reduction, Application to Partly Observed Diffusion Processes," Working Papers 2017-35, Center for Research in Economics and Statistics.
    18. Stephanie Ettmeier & Alexander Kriwoluzky, 2020. "Active, or Passive? Revisiting the Role of Fiscal Policy in the Great Inflation," Discussion Papers of DIW Berlin 1872, DIW Berlin, German Institute for Economic Research.
    19. Peters, G.W. & Sisson, S.A. & Fan, Y., 2012. "Likelihood-free Bayesian inference for α-stable models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3743-3756.
    20. Li, Dan & Clements, Adam & Drovandi, Christopher, 2023. "A Bayesian approach for more reliable tail risk forecasts," Journal of Financial Stability, Elsevier, vol. 64(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:84:y:2022:i:2:p:321-350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.