IDEAS home Printed from https://ideas.repec.org/p/crs/wpaper/2004-05.html
   My bibliography  Save this paper

Product-Limit Estimators of the Survival Function with Twice Censored Data

Author

Listed:
  • Valentin Patilea

    (Crest)

  • Jean-Marie Rolin

    (Crest)

Abstract

A model for competing (resp. complementary) risks survival data where the failure time can beleft (resp. right) censored is proposed. Product-limit estimators for the survival functions of theindividual risks are derived. We deduce the strong convergence of our estimators on the wholereal half-line without any additional assumption and their asymptotic normality underconditions concerning only the observed distribution. When the observations are generatedaccording to the double censoring model introduced by Turnbull (1974), the product-limitestimators represent upper and lower bounds for Turnbull's estimator.

Suggested Citation

  • Valentin Patilea & Jean-Marie Rolin, 2004. "Product-Limit Estimators of the Survival Function with Twice Censored Data," Working Papers 2004-05, Center for Research in Economics and Statistics.
  • Handle: RePEc:crs:wpaper:2004-05
    as

    Download full text from publisher

    File URL: http://crest.science/RePEc/wpstorage/2004-05.pdf
    File Function: Crest working paper version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rolin, J.M., 2001. "Nonparametric Competing Risks Models : Identification and Strong Consistency," Papers 0115, Catholique de Louvain - Institut de statistique.
    2. Ying, Zhiliang, 1989. "A note on the asymptotic properties of the product-limit estimator on the whole line," Statistics & Probability Letters, Elsevier, vol. 7(4), pages 311-314, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valentin Patilea & Jean-Marc Rolin, 2004. "Product-limit Estimators of the Survival Function with Left or Right Censored Data," Working Papers 2004-36, Center for Research in Economics and Statistics.
    2. Lu Tian & Hua Jin & Hajime Uno & Ying Lu & Bo Huang & Keaven M. Anderson & LJ Wei, 2020. "On the empirical choice of the time window for restricted mean survival time," Biometrics, The International Biometric Society, vol. 76(4), pages 1157-1166, December.
    3. Jean-Yves Dauxois & Agathe Guilloux, 2004. "Estimating the Cumulative incidence Functions under Length-biased Sampling," Working Papers 2004-01, Center for Research in Economics and Statistics.
    4. Dennis Dobler & Markus Pauly, 2018. "Bootstrap- and permutation-based inference for the Mann–Whitney effect for right-censored and tied data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 639-658, September.
    5. Marija Cuparić & Bojana Milošević, 2022. "New characterization-based exponentiality tests for randomly censored data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 461-487, June.
    6. Dennis Dobler, 2019. "Bootstrapping the Kaplan–Meier estimator on the whole line," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(1), pages 213-246, February.
    7. Dauxois, Jean-Yves & Guilloux, Agathe, 2008. "Nonparametric inference under competing risks and selection-biased sampling," Journal of Multivariate Analysis, Elsevier, vol. 99(4), pages 589-605, April.
    8. He, Shuyuan & Yang, Grace L., 2000. "On the strong convergence of the product-limit estimator and its integrals under censoring and random truncation," Statistics & Probability Letters, Elsevier, vol. 49(3), pages 235-244, September.
    9. Qibing Gao & Xiuqing Zhou & Yanqin Feng & Xiuli Du & XiaoXiao Liu, 2021. "An empirical likelihood method for quantile regression models with censored data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(1), pages 75-96, January.
    10. Somnath Datta & Dipankar Bandyopadhyay & Glen A. Satten, 2010. "Inverse Probability of Censoring Weighted U‐statistics for Right‐Censored Data with an Application to Testing Hypotheses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(4), pages 680-700, December.
    11. Yanqing Sun & Qiong Shou & Peter B. Gilbert & Fei Heng & Xiyuan Qian, 2023. "Semiparametric additive time‐varying coefficients model for longitudinal data with censored time origin," Biometrics, The International Biometric Society, vol. 79(2), pages 695-710, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crs:wpaper:2004-05. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General (email available below). General contact details of provider: https://edirc.repec.org/data/crestfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.