IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/17941.html
   My bibliography  Save this paper

A two sample size estimator for large data sets

Author

Listed:
  • O'Connell, Martin
  • Smith, Howard
  • Thomassen, Oyvind

Abstract

In GMM estimators moment conditions with additive error terms involve an observed component and a predicted component. If the predicted component is computationally costly to evaluate, it may not be feasible to estimate the model with all the available data. We propose an estimator that uses the full data set for the computationally cheap observed component, but a reduced sample size for the predicted component. We show consistency, asymptotic normality, and derive standard errors and a practical criterion for when our estimator is variance-reducing. We demonstrate the estimator's properties on a range of models through Monte Carlo studies and an empirical application to alcohol demand.

Suggested Citation

  • O'Connell, Martin & Smith, Howard & Thomassen, Oyvind, 2023. "A two sample size estimator for large data sets," CEPR Discussion Papers 17941, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:17941
    as

    Download full text from publisher

    File URL: https://cepr.org/publications/DP17941
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Gmm; Estimation; Micro data;
    All these keywords.

    JEL classification:

    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:17941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.cepr.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.