IDEAS home Printed from https://ideas.repec.org/p/cor/louvrp/2984.html
   My bibliography  Save this paper

A surbordinated CIR intensity model with application to wrong-way risk CVA

Author

Listed:
  • Cheikh Mbaye
  • Frédéric Vrins

Abstract

Credit Valuation Adjustment (CVA) pricing models need to be both flexible and tractable. The survival probability has to be known in closed form (for calibration purposes), the model should be able to fit any valid Credit Default Swap (CDS) curve, should lead to large volatilities (in line with CDS options) and finally should be able to feature significant Wrong-Way Risk (WWR) impact. The Cox-Ingersoll-Ross model (CIR) combined with independent positive jumps and deterministic shift (JCIR++) is a very good candidate : the variance (and thus covariance with exposure, i.e. WWR) can be increased with the jumps, whereas the calibration constraint is achieved via the shift. In practice however, there is a strong limit on the model parameters that can be chosen, and thus on the resulting WWR impact. This is because only non-negative shifts are allowed for consistency reasons, whereas the upwards jumps of the JCIR++ need to be compensated by a downward shift. To limit this problem, we consider the two-side jump model recently introduced by Mendoza-Arriaga \& Linetsky, built by time-changing CIR intensities. In a multivariate setup like CVA, time-changing the intensity partly kills the potential correlation with the exposure process and destroys WWR impact. Moreover, it can introduce a forward looking effect that can lead to arbitrage opportunities. In this paper, we use the time-changed CIR process in a way that the above issues are avoided. We show that the resulting process allows to introduce a large WWR effect compared to the JCIR++ model. The computation cost of the resulting Monte Carlo framework is reduced by using an adaptive control variate procedure.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Cheikh Mbaye & Frédéric Vrins, 2018. "A surbordinated CIR intensity model with application to wrong-way risk CVA," LIDAM Reprints CORE 2984, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvrp:2984
    Note: In : International Journal of Theoretical and Applied Finance, 21(7), 2018
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Frédéric Vrins, 2017. "Wrong-Way Risk Cva Models With Analytical Epe Profiles Under Gaussian Exposure Dynamics," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-35, November.
    2. Monique Jeanblanc & Frédéric Vrins, 2018. "Conic martingales from stochastic integrals," Mathematical Finance, Wiley Blackwell, vol. 28(2), pages 516-535, April.
    3. Frédéric Vrins, 2018. "Sampling the Multivariate Standard Normal Distribution under a Weighted Sum Constraint," Risks, MDPI, vol. 6(3), pages 1-13, June.
    4. Damiano Brigo & Fr'ed'eric Vrins, 2016. "Disentangling wrong-way risk: pricing CVA via change of measures and drift adjustment," Papers 1611.02877, arXiv.org.
    5. Rafael Mendoza-Arriaga & Vadim Linetsky, 2014. "Time-changed CIR default intensities with two-sided mean-reverting jumps," Papers 1403.5402, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheikh Mbaye & Frédéric Vrins, 2022. "Affine term structure models: A time‐change approach with perfect fit to market curves," Mathematical Finance, Wiley Blackwell, vol. 32(2), pages 678-724, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frédéric Vrins, 2017. "Wrong-Way Risk Cva Models With Analytical Epe Profiles Under Gaussian Exposure Dynamics," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-35, November.
    2. Cheikh Mbaye & Frédéric Vrins, 2022. "Affine term structure models: A time‐change approach with perfect fit to market curves," Mathematical Finance, Wiley Blackwell, vol. 32(2), pages 678-724, April.
    3. BRIGO, Damiano & VRINS, Frédéric, 2018. "Disentangling wrong-way risk: pricing credit valuation adjustment via change of measures," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1154-1164.
    4. Irena Barjav{s}i'c & Stefano Battiston & Vinko Zlati'c, 2023. "Credit Valuation Adjustment in Financial Networks," Papers 2305.16434, arXiv.org.
    5. Lamboni, Matieyendou, 2022. "Efficient dependency models: Simulating dependent random variables," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 199-217.
    6. Brigo, Damiano & Jeanblanc, Monique & Vrins, Frédéric, 2020. "SDEs with uniform distributions: Peacocks, conic martingales and mean reverting uniform diffusions," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 3895-3919.
    7. David Xiao, 2023. "Default Process Modeling and Credit Valuation Adjustment," Papers 2309.03311, arXiv.org.
    8. Lee, David, 2023. "Default Forecasting and Credit Valuation Adjustment," MPRA Paper 118578, University Library of Munich, Germany.
    9. Li, Jing & Li, Lingfei & Zhang, Gongqiu, 2017. "Pure jump models for pricing and hedging VIX derivatives," Journal of Economic Dynamics and Control, Elsevier, vol. 74(C), pages 28-55.
    10. Feng, Yaqin & Wang, Min & Zhang, Yuanqing, 2019. "CVA for Cliquet options under Heston model," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 272-282.
    11. Damiano Brigo & Fr'ed'eric Vrins, 2016. "Disentangling wrong-way risk: pricing CVA via change of measures and drift adjustment," Papers 1611.02877, arXiv.org.
    12. Qu, Yan & Dassios, Angelos & Zhao, Hongbiao, 2021. "Random variate generation for exponential and gamma tilted stable distributions," LSE Research Online Documents on Economics 108593, London School of Economics and Political Science, LSE Library.
    13. Lingfei Li & Vadim Linetsky, 2015. "Discretely monitored first passage problems and barrier options: an eigenfunction expansion approach," Finance and Stochastics, Springer, vol. 19(4), pages 941-977, October.
    14. Yan Qu & Angelos Dassios & Hongbiao Zhao, 2023. "Shot-noise cojumps: Exact simulation and option pricing," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 74(3), pages 647-665, March.
    15. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2019. "A general framework for time-changed Markov processes and applications," European Journal of Operational Research, Elsevier, vol. 273(2), pages 785-800.
    16. Zhe Cheng & Scott Robertson, 2017. "Endogenous current coupons," Finance and Stochastics, Springer, vol. 21(4), pages 1027-1071, October.
    17. Cheikh Mbaye & Fr'ed'eric Vrins, 2019. "An arbitrage-free conic martingale model with application to credit risk," Papers 1909.02474, arXiv.org.
    18. Qu, Yan & Dassios, Angelos & Zhao, Hongbiao, 2023. "Shot-noise cojumps: exact simulation and option pricing," LSE Research Online Documents on Economics 111537, London School of Economics and Political Science, LSE Library.
    19. Jing Li & Lingfei Li & Rafael Mendoza-Arriaga, 2016. "Additive subordination and its applications in finance," Finance and Stochastics, Springer, vol. 20(3), pages 589-634, July.
    20. Pingping Jiang & Bo Li & Yongjin Wang, 2020. "Exit Times, Undershoots and Overshoots for Reflected CIR Process with Two-Sided Jumps," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 693-710, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:2984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.