IDEAS home Printed from https://ideas.repec.org/p/col/000508/017208.html
   My bibliography  Save this paper

Distribuciones no normales para la selección de activos en el mercado Colombiano

Author

Listed:
  • Andrés Felipe Galeano Zurbaran

Abstract

Modelos tradicionales para la construcción de portafolios son desarrollados sobre distribuciones normales. Un ejemplo de esto es la frontera eficiente propuesta por Markowitz, la cual solo incorpora los dos primeros momentos de la distribución (media-varianza) para la construcción de portafolios eficientes. Lo anterior requiere, al menos, que los portafolios posean una distribución elíptica. Adicionalmente, modelos de serie de tiempo se construyen frecuentemente sobre errores normales. Sin embargo, abundantes estudios rechazan la presencia de normalidad en mercados financieros e incluso literatura reciente ha encontrado que los retornos de índices accionarios colombianos exhiben distribuciones no normales. Considerando la evidencia literaria de distribuciones de los activos del mercado colombiano, modelos que no se restrinjan a distribuciones normales deberían generar mejores asignaciones de portafolio. El presente artículo demuestra que los retornos del mercado colombiano no siguen distribuciones normales y que, a través de la construcción de cópulas t y marginales logísticas e hiperbólicas generalizada, se supera ampliamente los métodos de estimación bajo normalidad. Adicionalmente, el estudio encuentra que la mayoría de activos mantienen una clase de distribución en el tiempo. Finalmente, se concluye que bajo distribuciones no-normales las fronteras eficientes no son necesariamente maximizadoras de utilidad y que el uso distribuciones no-normales generan retornos anuales entre 1% y 3% por encima de los retornos bajo distribuciones normales en el mercado accionario colombiano durante el periodo 2009-2016. Aunque el retorno per se no es el objetivo, el principal hallazgo consiste en que los portafolios construidos mediante supuestos normales, resultan ineficientes en un universo de distribuciones no-normales. Adicionalmente, se observa que los portafolios bajo distribuciones normales no se adecúan correctamente a los niveles de tolerancia por riesgo de los inversionistas, al no calibrar correctamente la distribución de resultados posibles.

Suggested Citation

  • Andrés Felipe Galeano Zurbaran, 2018. "Distribuciones no normales para la selección de activos en el mercado Colombiano," Documentos de Trabajo 17208, Quantil.
  • Handle: RePEc:col:000508:017208
    as

    Download full text from publisher

    File URL: http://quantil.co/wp-content/uploads/2019/02/Doc__Trab__Tesis_Andr_s-3.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Tao & Serota, R.A., 2014. "A model for stock returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 89-115.
    2. Yamamoto, Ryuichi, 2012. "Intraday technical analysis of individual stocks on the Tokyo Stock Exchange," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 3033-3047.
    3. Alberto Humala & Gabriel Rodriguez, 2013. "Some stylized facts of return in the foreign exchange and stock markets in Peru," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 30(2), pages 139-158, May.
    4. Muhannad A. Atmeh & Ian M. Dobbs, 2006. "Technical analysis and the stochastic properties of the Jordanian stock market index return," Studies in Economics and Finance, Emerald Group Publishing, vol. 23(2), pages 119-140, June.
    5. Alonso, César & Torres, Giselle, 2014. "Características estadísticas del índice general de la Bolsa de Valores de Colombia (IGBC) en sus primeros 10 años," Journal of Economics, Finance and Administrative Science, Universidad ESAN, vol. 19(36), pages 45-54.
    6. repec:eme:sefpps:v:30:y:2013:i:1:p:139-158 is not listed on IDEAS
    7. Jhonatan Pérez Villalobos & Juan Carlos Mendoza, 2010. "Efecto día en el mercado accionario Colombiano: una aproximación no paramétrica," Borradores de Economia 585, Banco de la Republica de Colombia.
    8. Guidolin, Massimo & Hyde, Stuart & McMillan, David & Ono, Sadayuki, 2009. "Non-linear predictability in stock and bond returns: When and where is it exploitable?," International Journal of Forecasting, Elsevier, vol. 25(2), pages 373-399.
    9. Eling, Martin, 2014. "Fitting asset returns to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 45-56.
    10. Ning Rong & Stefan Trück, 2010. "Returns of REITS and stock markets," Journal of Property Investment & Finance, Emerald Group Publishing Limited, vol. 28(1), pages 34-57, February.
    11. Ko, Kuan-Cheng & Lin, Shinn-Juh & Su, Hsiang-Ju & Chang, Hsing-Hua, 2014. "Value investing and technical analysis in Taiwan stock market," Pacific-Basin Finance Journal, Elsevier, vol. 26(C), pages 14-36.
    12. Myron J. Gordon & Eli Shapiro, 1956. "Capital Equipment Analysis: The Required Rate of Profit," Management Science, INFORMS, vol. 3(1), pages 102-110, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scholz, Michael & Sperlich, Stefan & Nielsen, Jens Perch, 2016. "Nonparametric long term prediction of stock returns with generated bond yields," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 82-96.
    2. Chuan-Hao Hsu & Hung-Gay Fung & Yi-Ping Chang, 2016. "The performance of Taiwanese firms after a share repurchase announcement," Review of Quantitative Finance and Accounting, Springer, vol. 47(4), pages 1251-1269, November.
    3. Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Risks, MDPI, vol. 6(4), pages 1-18, September.
    4. Eero Pätäri & Timo Leivo, 2017. "A Closer Look At Value Premium: Literature Review And Synthesis," Journal of Economic Surveys, Wiley Blackwell, vol. 31(1), pages 79-168, February.
    5. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    6. Karel Janda, 2019. "Earnings Stability and Peer Company Selection for Multiple Based Indirect Valuation," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 69(1), pages 37-75, February.
    7. BenSaïda, Ahmed & Slim, Skander, 2016. "Highly flexible distributions to fit multiple frequency financial returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 203-213.
    8. repec:dau:papers:123456789/9153 is not listed on IDEAS
    9. George Kapetanios & James Mitchell & Yongcheol Shin, 2010. "A Nonlinear Panel Model of Cross-sectional Dependence," Working Papers 673, Queen Mary University of London, School of Economics and Finance.
    10. Ivan E. Brick & Hong-Yi Chen & Chia-Hsun Hsieh & Cheng-Few Lee, 2016. "A comparison of alternative models for estimating firm’s growth rate," Review of Quantitative Finance and Accounting, Springer, vol. 47(2), pages 369-393, August.
    11. Wang, Xiao-Tian & Li, Zhe & Zhuang, Le, 2017. "European option pricing under the Student’s t noise with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 848-858.
    12. Nicolas Langrené & Geoffrey Lee & Zili Zhu, 2016. "Switching To Nonaffine Stochastic Volatility: A Closed-Form Expansion For The Inverse Gamma Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-37, August.
    13. A. Bruggeman & M. Hradisky & V. Périlleux, 2005. "Share prices, house prices and monetary policy," Economic Review, National Bank of Belgium, issue iii, pages 65-78, September.
    14. Chen Xiang LIU & Mohamed El Hedi AROURI, 2008. "Stock craze: an empirical analysis of PER in Chinese equity market," Economics Bulletin, AccessEcon, vol. 14(1), pages 1-17.
    15. James Ming Chen, 2017. "Systematic Risk in the Macrocosm," Quantitative Perspectives on Behavioral Economics and Finance, in: Econophysics and Capital Asset Pricing, chapter 0, pages 239-274, Palgrave Macmillan.
    16. Mehmet Balcilar & Rangan Gupta & Christian Pierdzioch, 2022. "Oil-Price Uncertainty and International Stock Returns: Dissecting Quantile-Based Predictability and Spillover Effects Using More than a Century of Data," Energies, MDPI, vol. 15(22), pages 1-26, November.
    17. Carlos León, 2012. "Implied probabilities of default from Colombian money market spreads: The Merton Model under equity market informational constraints," Borradores de Economia 10075, Banco de la Republica.
    18. Lin, Edward M.H. & Sun, Edward W. & Yu, Min-Teh, 2020. "Behavioral data-driven analysis with Bayesian method for risk management of financial services," International Journal of Production Economics, Elsevier, vol. 228(C).
    19. Bruno Breyer Caldas & João Frois Caldeira & Guilherme Vale Moura, 2016. "Is Pairs Trading Performance Sensitive To The Methodologies?: A Comparison," Anais do XLII Encontro Nacional de Economia [Proceedings of the 42nd Brazilian Economics Meeting] 130, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    20. Ralf Diedrich & Stefan Dierkes & Hans-Christian Gröger, 2022. "A note on the cost of capital with fixed payout ratios," Review of Quantitative Finance and Accounting, Springer, vol. 59(4), pages 1559-1575, November.
    21. Philipp Krüger & Augustin Landier & David Thesmar, 2015. "The WACC Fallacy: The Real Effects of Using a Unique Discount Rate," Journal of Finance, American Finance Association, vol. 70(3), pages 1253-1285, 06.

    More about this item

    Keywords

    Cópula; Optimización de Portafolio; Garch; no-normales; Frontera Eficiente.;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000508:017208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Administrador (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.