IDEAS home Printed from https://ideas.repec.org/p/col/000508/017208.html
   My bibliography  Save this paper

Distribuciones no normales para la selección de activos en el mercado Colombiano

Author

Listed:
  • Andrés Felipe Galeano Zurbaran

Abstract

Modelos tradicionales para la construcción de portafolios son desarrollados sobre distribuciones normales. Un ejemplo de esto es la frontera eficiente propuesta por Markowitz, la cual solo incorpora los dos primeros momentos de la distribución (media-varianza) para la construcción de portafolios eficientes. Lo anterior requiere, al menos, que los portafolios posean una distribución elíptica. Adicionalmente, modelos de serie de tiempo se construyen frecuentemente sobre errores normales. Sin embargo, abundantes estudios rechazan la presencia de normalidad en mercados financieros e incluso literatura reciente ha encontrado que los retornos de índices accionarios colombianos exhiben distribuciones no normales. Considerando la evidencia literaria de distribuciones de los activos del mercado colombiano, modelos que no se restrinjan a distribuciones normales deberían generar mejores asignaciones de portafolio. El presente artículo demuestra que los retornos del mercado colombiano no siguen distribuciones normales y que, a través de la construcción de cópulas t y marginales logísticas e hiperbólicas generalizada, se supera ampliamente los métodos de estimación bajo normalidad. Adicionalmente, el estudio encuentra que la mayoría de activos mantienen una clase de distribución en el tiempo. Finalmente, se concluye que bajo distribuciones no-normales las fronteras eficientes no son necesariamente maximizadoras de utilidad y que el uso distribuciones no-normales generan retornos anuales entre 1% y 3% por encima de los retornos bajo distribuciones normales en el mercado accionario colombiano durante el periodo 2009-2016. Aunque el retorno per se no es el objetivo, el principal hallazgo consiste en que los portafolios construidos mediante supuestos normales, resultan ineficientes en un universo de distribuciones no-normales. Adicionalmente, se observa que los portafolios bajo distribuciones normales no se adecúan correctamente a los niveles de tolerancia por riesgo de los inversionistas, al no calibrar correctamente la distribución de resultados posibles.

Suggested Citation

  • Andrés Felipe Galeano Zurbaran, 2018. "Distribuciones no normales para la selección de activos en el mercado Colombiano," Documentos de Trabajo 17208, Quantil.
  • Handle: RePEc:col:000508:017208
    as

    Download full text from publisher

    File URL: http://quantil.co/wp-content/uploads/2019/02/Doc__Trab__Tesis_Andr_s-3.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Tao & Serota, R.A., 2014. "A model for stock returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 89-115.
    2. Yamamoto, Ryuichi, 2012. "Intraday technical analysis of individual stocks on the Tokyo Stock Exchange," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 3033-3047.
    3. Humala, Alberto & Rodriguez, Gabriel, 2010. "Some stylized facts of returns in the foreign exchange and stock markets in Peru," Working Papers 2010-017, Banco Central de Reserva del Perú.
    4. Alberto Humala & Gabriel Rodriguez, 2013. "Some stylized facts of return in the foreign exchange and stock markets in Peru," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 30(2), pages 139-158, May.
    5. Muhannad A. Atmeh & Ian M. Dobbs, 2006. "Technical analysis and the stochastic properties of the Jordanian stock market index return," Studies in Economics and Finance, Emerald Group Publishing, vol. 23(2), pages 119-140, June.
    6. Alonso, César & Torres, Giselle, 2014. "Características estadísticas del índice general de la Bolsa de Valores de Colombia (IGBC) en sus primeros 10 años," Journal of Economics, Finance and Administrative Science, Universidad ESAN, vol. 19(36), pages 45-54.
    7. repec:eme:sefpps:v:30:y:2013:i:1:p:139-158 is not listed on IDEAS
    8. Jhonatan Pérez Villalobos & Juan Carlos Mendoza, 2010. "Efecto día en el mercado accionario Colombiano: una aproximación no paramétrica," Borradores de Economia 585, Banco de la Republica de Colombia.
    9. Guidolin, Massimo & Hyde, Stuart & McMillan, David & Ono, Sadayuki, 2009. "Non-linear predictability in stock and bond returns: When and where is it exploitable?," International Journal of Forecasting, Elsevier, vol. 25(2), pages 373-399.
    10. Eling, Martin, 2014. "Fitting asset returns to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 45-56.
    11. Ning Rong & Stefan Trück, 2010. "Returns of REITS and stock markets," Journal of Property Investment & Finance, Emerald Group Publishing Limited, vol. 28(1), pages 34-57, February.
    12. Ko, Kuan-Cheng & Lin, Shinn-Juh & Su, Hsiang-Ju & Chang, Hsing-Hua, 2014. "Value investing and technical analysis in Taiwan stock market," Pacific-Basin Finance Journal, Elsevier, vol. 26(C), pages 14-36.
    13. Myron J. Gordon & Eli Shapiro, 1956. "Capital Equipment Analysis: The Required Rate of Profit," Management Science, INFORMS, vol. 3(1), pages 102-110, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    2. Renzo Pardo Figueroa & Gabriel Rodríguez, 2014. "Distinguishing between True and Spurious Long Memory in the Volatility of Stock Market Returns in Latin America," Documentos de Trabajo / Working Papers 2014-395, Departamento de Economía - Pontificia Universidad Católica del Perú.
    3. Willy Alanya & Gabriel Rodríguez, 2019. "Asymmetries in Volatility: An Empirical Study for the Peruvian Stock and Forex Markets," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-18, March.
    4. Gabriel Rodríguez & Roxana Tramontana Tocto, 2015. "Application of a Short Memory Model With Random Level Shifts to the Volatility of Latin American Stock Market Returns," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 52(2), pages 185-211, November.
    5. Willy Alanya & Gabriel Rodríguez, 2018. "Stochastic Volatility in the Peruvian Stock Market and Exchange Rate Returns: A Bayesian Approximation," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(3), pages 354-385, December.
    6. Xin Yang & Shigang Wen & Zhifeng Liu & Cai Li & Chuangxia Huang, 2019. "Dynamic Properties of Foreign Exchange Complex Network," Mathematics, MDPI, vol. 7(9), pages 1-19, September.
    7. Gabriel Rodríguez, 2015. "Modeling Latin-American Stock Markets Volatility: Varying Probabilities and Mean Reversion in a Random Level Shifts Model," Documentos de Trabajo / Working Papers 2015-403, Departamento de Economía - Pontificia Universidad Católica del Perú.
    8. repec:agr:journl:v:4(621):y:2019:i:4(621):p:35-52 is not listed on IDEAS
    9. Andrés Herrera Aramburú & Gabriel Rodríguez, 2016. "Volatility of stock market and exchange rate returns in Peru: Long memory or short memory with level shifts?," International Journal of Monetary Economics and Finance, Inderscience Enterprises Ltd, vol. 9(1), pages 45-66.
    10. Alfredo Calderon Vela & Gabriel Rodríguez, 2014. "Extreme Value Theory: An Application to the Peruvian Stock Market Returns," Documentos de Trabajo / Working Papers 2014-394, Departamento de Economía - Pontificia Universidad Católica del Perú.
    11. M. MALLIKARJUNA & R. Prabhakara RAO, 2019. "Volatility experience of major world stock markets," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(4(621), W), pages 35-52, Winter.
    12. Gabriel Rodríguez, 2016. "Modeling Latin-American Stock and Forex Markets Volatility: Empirical Application of a Model with Random Level Shifts and Genuine Long Memory [Modelando la volatilidad de los mercados bursátiles y cam," Documentos de Trabajo / Working Papers 2016-416, Departamento de Economía - Pontificia Universidad Católica del Perú.
    13. Gabriel Rodríguez & José Carlos Gonzáles Tanaka, 2016. "An Empirical Application of a Random Level Shifts Model with Time-Varying Probability and Mean Reversion to the Volatility of Latin-American Forex Markets Returns [Una aplicación empírica de un modelo," Documentos de Trabajo / Working Papers 2016-415, Departamento de Economía - Pontificia Universidad Católica del Perú.
    14. Lengua Lafosse, Patricia & Rodríguez, Gabriel, 2018. "An empirical application of a stochastic volatility model with GH skew Student's t-distribution to the volatility of Latin-American stock returns," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 155-173.
    15. Zhen-Hua Yang & Jian-Guo Liu & Chang-Rui Yu & Jing-Ti Han, 2017. "Quantifying the effect of investors’ attention on stock market," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-16, May.
    16. Ahmet Akca & Ethem Çanakoğlu, 2021. "Adaptive stochastic risk estimation of firm operating profit," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 48(3), pages 463-504, September.
    17. Scholz, Michael & Sperlich, Stefan & Nielsen, Jens Perch, 2016. "Nonparametric long term prediction of stock returns with generated bond yields," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 82-96.
    18. Junior A. Ojeda Cunya & Gabriel Rodríguez, 2016. "An application of a random level shifts model to the volatility of Peruvian stock and exchange rate returns," Macroeconomics and Finance in Emerging Market Economies, Taylor & Francis Journals, vol. 9(1), pages 34-55, March.
    19. Dennis Alvaro & Ángel Guillén & Gabriel Rodríguez, 2017. "Modelling the volatility of commodities prices using a stochastic volatility model with random level shifts," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 153(1), pages 71-103, February.
    20. Patricia Lengua Lafosse & Cristian Bayes & Gabriel Rodríguez, 2015. "A Stochastic Volatility Model with GH Skew Student’s t-Distribution: Application to Latin-American Stock Returns," Documentos de Trabajo / Working Papers 2015-405, Departamento de Economía - Pontificia Universidad Católica del Perú.
    21. Chuan-Hao Hsu & Hung-Gay Fung & Yi-Ping Chang, 2016. "The performance of Taiwanese firms after a share repurchase announcement," Review of Quantitative Finance and Accounting, Springer, vol. 47(4), pages 1251-1269, November.

    More about this item

    Keywords

    Cópula; Optimización de Portafolio; Garch; no-normales; Frontera Eficiente.;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000508:017208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Administrador (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.