IDEAS home Printed from https://ideas.repec.org/p/cmf/wpaper/wp2010_1006.html
   My bibliography  Save this paper

Panel Growth Regressions with General Predetermined Variables: Likelihood-Based Estimation and Bayesian Averaging

Author

Listed:

Abstract

In this paper I estimate empirical growth models simultaneously considering endogenous regressors and model uncertainty. In order to apply Bayesian methods such as Bayesian Model Averaging (BMA) to dynamic panel data models with predetermined or endogenous variables and fixed effects, I propose a likelihood function for such models. The resulting maximum likelihood estimator can be interpreted as the LIML counterpart of GMM estimators. Via Monte Carlo simulations, I conclude that the finite-sample performance of the proposed estimator is better than that of the commonly-used standard GMM. In contrast to the previous consensus in the empirical growth literature, empirical results indicate that once endogeneity and model uncertainty are accounted for, the estimated convergence rate is not significantly different from zero. Moreover, there seems to be only one variable, the investment ration, that causes long-run economic growth.

Suggested Citation

  • Enrique Moral-Benito, 2010. "Panel Growth Regressions with General Predetermined Variables: Likelihood-Based Estimation and Bayesian Averaging," Working Papers wp2010_1006, CEMFI.
  • Handle: RePEc:cmf:wpaper:wp2010_1006
    as

    Download full text from publisher

    File URL: https://www.cemfi.es/ftp/wp/1006.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hausman, Jerry A & Taylor, William E, 1981. "Panel Data and Unobservable Individual Effects," Econometrica, Econometric Society, vol. 49(6), pages 1377-1398, November.
    2. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    3. Holtz-Eakin, Douglas & Newey, Whitney & Rosen, Harvey S, 1988. "Estimating Vector Autoregressions with Panel Data," Econometrica, Econometric Society, vol. 56(6), pages 1371-1395, November.
    4. Theo S. Eicher & Chris Papageorgiou & Adrian E. Raftery, 2011. "Default priors and predictive performance in Bayesian model averaging, with application to growth determinants," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(1), pages 30-55, January/F.
    5. Enrique Moral-Benito, 2012. "Determinants of Economic Growth: A Bayesian Panel Data Approach," The Review of Economics and Statistics, MIT Press, vol. 94(2), pages 566-579, May.
    6. Kleibergen, Frank & Zivot, Eric, 2003. "Bayesian and classical approaches to instrumental variable regression," Journal of Econometrics, Elsevier, vol. 114(1), pages 29-72, May.
    7. Moral-Benito, Enrique, 2010. "Model averaging in economics," MPRA Paper 26047, University Library of Munich, Germany.
    8. N. Gregory Mankiw & David Romer & David N. Weil, 1992. "A Contribution to the Empirics of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(2), pages 407-437.
    9. Delano S Villanueva & Roberto S Mariano & Diwa C Guinigundo & Abbas Mirakhor, 2023. "Testing the Neoclassical Theory of Economic Growth: A Panel Data Approach," World Scientific Book Chapters, in: Economic Adjustment and Growth Theory and Practice, chapter 2, pages 10-43, World Scientific Publishing Co. Pte. Ltd..
    10. Romer, Paul M, 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
    11. Romer, Paul M, 1987. "Growth Based on Increasing Returns Due to Specialization," American Economic Review, American Economic Association, vol. 77(2), pages 56-62, May.
    12. Xavier Sala-I-Martin & Gernot Doppelhofer & Ronald I. Miller, 2004. "Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach," American Economic Review, American Economic Association, vol. 94(4), pages 813-835, September.
    13. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    14. Nazrul Islam, 1995. "Growth Empirics: A Panel Data Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(4), pages 1127-1170.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baddou, Mehdi & Masih, Mansur, 2018. "What are the factors that drive economic growth? evidence from Turkey," MPRA Paper 111202, University Library of Munich, Germany.
    2. León-González, Roberto & Montolio, Daniel, 2015. "Endogeneity and panel data in growth regressions: A Bayesian model averaging approach," Journal of Macroeconomics, Elsevier, vol. 46(C), pages 23-39.
    3. Leon-Gonzalez, Roberto & Vinayagathasan, Thanabalasingam, 2015. "Robust determinants of growth in Asian developing economies: A Bayesian panel data model averaging approach," Journal of Asian Economics, Elsevier, vol. 36(C), pages 34-46.
    4. Moral-Benito, Enrique, 2010. "Model averaging in economics," MPRA Paper 26047, University Library of Munich, Germany.
    5. Githuku, Simon & Omolo, Jacob & Mwabu, Germano, 2018. "Income Convergence in the East African Community," African Journal of Economic Review, African Journal of Economic Review, vol. 6(01), January.
    6. Frédéric Gaspart & Pierre Pecher, 2019. "Ethnic Inclusiveness of the Central State Government and Economic Growth in Sub-Saharan Africa," Journal of African Economies, Centre for the Study of African Economies, vol. 28(2), pages 176-201.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ulaşan, Bülent, 2012. "Cross-country growth empirics and model uncertainty: An overview," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-69.
    2. Markus Eberhardt & Francis Teal, 2011. "Econometrics For Grumblers: A New Look At The Literature On Cross‐Country Growth Empirics," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 109-155, February.
    3. Michael S. Delgado & Daniel J. Henderson & Christopher F. Parmeter, 2014. "Does Education Matter for Economic Growth?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(3), pages 334-359, June.
    4. Bloom, David E. & Canning, David & Kotschy, Rainer & Prettner, Klaus & Schünemann, Johannes, 2024. "Health and economic growth: Reconciling the micro and macro evidence," World Development, Elsevier, vol. 178(C).
    5. Chirwa Themba G. & Odhiambo Nicholas M., 2016. "Macroeconomic Determinants of Economic Growth: A Review of International Literature," South East European Journal of Economics and Business, Sciendo, vol. 11(2), pages 33-47, December.
    6. Próchniak, Mariusz & Witkowski, Bartosz, 2013. "Time stability of the beta convergence among EU countries: Bayesian model averaging perspective," Economic Modelling, Elsevier, vol. 30(C), pages 322-333.
    7. ?gel de la Fuente, "undated". "Convergence Across Countries And Regions: Theory And Empirics," UFAE and IAE Working Papers 447.00, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    8. Dakpogan, Arnaud & Smit, Eon, 2018. "The effect of electricity losses on GDP in Benin," MPRA Paper 89545, University Library of Munich, Germany.
    9. Roberto Leon-Gonzalez & Daniel Montolio, 2004. "Growth, convergence and public investment. A Bayesian model averaging approach," Applied Economics, Taylor & Francis Journals, vol. 36(17), pages 1925-1936.
    10. Aiyar, Shekhar & Duval, Romain & Puy, Damien & Wu, Yiqun & Zhang, Longmei, 2018. "Growth slowdowns and the middle-income trap," Japan and the World Economy, Elsevier, vol. 48(C), pages 22-37.
    11. Celine Bonnefond, 2014. "Growth Dynamics And Conditional Convergence Among Chinese Provinces: A Panel Data Investigation Using System Gmm Estimator," Journal of Economic Development, Chung-Ang Unviersity, Department of Economics, vol. 39(4), pages 1-25, December.
    12. Jochen Hartwig, 2009. "A panel Granger-causality test of endogenous vs. exogenous growth," KOF Working papers 09-231, KOF Swiss Economic Institute, ETH Zurich.
    13. Capolupo, Rosa, 2009. "The New Growth Theories and Their Empirics after Twenty Years," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-72.
    14. Ahn, Seung C. & Lee, Young H. & Schmidt, Peter, 2013. "Panel data models with multiple time-varying individual effects," Journal of Econometrics, Elsevier, vol. 174(1), pages 1-14.
    15. Petreski, Marjan, 2009. "Analysis of exchange-rate regime effect on growth: theoretical channels and empirical evidence with panel data," Economics Discussion Papers 2009-49, Kiel Institute for the World Economy (IfW Kiel).
    16. Céline Kauffmann, 2000. "The interactive effect of trade and education on growth," Cahiers de la Maison des Sciences Economiques bla00022, Université Panthéon-Sorbonne (Paris 1).
    17. Alali, Walid Y., 2010. "Impact of Institutions and Policy on Economic Growth: Empirical Evidence," EconStor Preprints 269878, ZBW - Leibniz Information Centre for Economics.
    18. Enrique Moral‐Benito, 2016. "Growth Empirics in Panel Data Under Model Uncertainty and Weak Exogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(3), pages 584-602, April.
    19. Celine Kauffmann, 2000. "The interactive effect of trade and education on growth," Post-Print halshs-03721622, HAL.
    20. Galimberti, Jaqueson K., 2009. "Conditioned Export-Led Growth Hypothesis: A Panel Threshold Regressions Approach," MPRA Paper 13417, University Library of Munich, Germany.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cmf:wpaper:wp2010_1006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Araceli Requerey (email available below). General contact details of provider: https://edirc.repec.org/data/cemfies.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.