IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/99s-25.html
   My bibliography  Save this paper

Inference for the Generalization Error

Author

Listed:
  • Yoshua Bengio
  • Claude Nadeau

Abstract

We perform a theoretical investigation of the variance of the cross-validation estimate of the generalization error that takes into account the variability due to the choice of training sets and test examples. This allows us to propose two new estimators of this variance. We show, via simulations, that these new statistics perform well relative to the statistics considered in Dietterich (1998). In particular, tests of hypothesis based on these don't tend to be too liberal like other tests currently available, and have good power. Nous considérons l'estimation par validation croisée de l'erreur de généralisation. Nous effectuons une étude théorique de la variance de ect estimateur en tenant compte de la variabilité due au choix des ensembles d'entraînement et des exemples de test. Cela nous permet de proposer deux nouveaux estimateurs de cette variance. Nous montrons, via des simulations, que ces nouvelles statistiques performent bien par rapport aux statistiques considérées dans Dietterich (1998). En particulier, ces nouvelles statistiques se démarquent des autres présentement utilisées par le fait qu'elles mènent à des tests d'hypothèses qui sont puissants sans avoir tendance à être trop libéraux.

Suggested Citation

  • Yoshua Bengio & Claude Nadeau, 1999. "Inference for the Generalization Error," CIRANO Working Papers 99s-25, CIRANO.
  • Handle: RePEc:cir:cirwor:99s-25
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/99s-25.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Buckmann, Marcus & Gallego Marquez, Paula & Gimpelewicz, Mariana & Kapadia, Sujit & Rismanchi, Katie, 2023. "The more the merrier? Evidence on the value of multiple requirements in bank regulation," Journal of Banking & Finance, Elsevier, vol. 149(C).
    2. Xiong, Yingqiu & Liu, Yezheng & Qian, Yang & Jiang, Yuanchun & Chai, Yidong & Ling, Haifeng, 2024. "Review-based recommendation under preference uncertainty: An asymmetric deep learning framework," European Journal of Operational Research, Elsevier, vol. 316(3), pages 1044-1057.
    3. Shi, Jiaqi & Li, Chenxi & Yan, Xiaohe, 2023. "Artificial intelligence for load forecasting: A stacking learning approach based on ensemble diversity regularization," Energy, Elsevier, vol. 262(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:99s-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.