IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/2022s-23.html
   My bibliography  Save this paper

Measuring Small Business Dynamics and Employment with Private-Sector Real-Time Data

Author

Listed:
  • André Kurmann
  • Étienne Lalé
  • Lien Ta

Abstract

The COVID-19 pandemic has led to an explosion of research using private-sector datasets to measure business dynamics and employment in real-time. Yet questions remain about the representativeness of these datasets and how to distinguish business openings and closings from sample churn – i.e., sample entry of already operating businesses and sample exits of businesses that continue operating. This paper proposes new methods to address these issues and applies them to the case of Homebase, a real-time dataset of mostly small service-sector sector businesses that has been used extensively in the literature to study the effects of the pandemic. We match the Homebase establishment records with information on business activity from Safegraph, Google, and Facebook to assess the representativeness of the data and to estimate the probability of business closings and openings among sample exits and entries. We then exploit the high frequency / geographic detail of the data to study whether small service-sector businesses have been hit harder by the pandemic than larger firms, and the extent to which the Paycheck Protection Program (PPP) helped small businesses keep their workforce employed. We find that our real-time estimates of small business dynamics and employment during the pandemic are remarkably representative and closely fit population counterparts from administrative data that have recently become available. Distinguishing business closings and openings from sample churn is critical for these results. We also find that while employment by small businesses contracted more severely in the beginning of the pandemic than employment of larger businesses, it also recovered more strongly thereafter. In turn, our estimates suggests that the rapid rollout of PPP loans significantly mitigated the negative employment effects of the pandemic. Business closings and openings are a key driver for both results, thus underlining the importance of properly correcting for sample churn. La pandémie de COVID-19 a conduit à une explosion de la recherche utilisant des ensembles de données du secteur privé pour mesurer la dynamique des entreprises et l'emploi en temps réel. Plusieurs questions restent posées quant à la représentativité de ces ensembles de données et à la manière de distinguer les créations et les fermetures d'entreprises du roulement de l'échantillon - c'est-à-dire l'entrée dans l'échantillon d'entreprises déjà en activité et la sortie de l'échantillon d'entreprises qui continuent à fonctionner. Cet article propose de nouvelles méthodes pour résoudre ces problèmes et les applique au cas de Homebase, un ensemble de données en temps réel composé principalement de petites entreprises du secteur des services qui a été largement utilisé dans la littérature pour étudier les effets de la pandémie. Nous apparions les établissements présents dans les données de Homebase avec des informations sur l'activité commerciale provenant de Safegraph, Google et Facebook afin d'évaluer la représentativité des données et d'estimer la probabilité de fermetures et de créations d'entreprises parmi les sorties et les entrées de l'échantillon. Nous exploitons ensuite la haute fréquence et le détail géographique des données pour étudier si les petites entreprises du secteur des services ont été plus durement touchées par la pandémie que les grandes entreprises, et analyser les effets du programme de prêts d’urgence (Paycheck Protection Program, PPP) sur la survie et l’emploi des petites entreprises. Nous constatons que nos estimations en temps réel de la dynamique et de l'emploi des petites entreprises pendant la pandémie sont remarquablement représentatives et correspondent étroitement aux résultats obtenus à partir de données administratives qui sont devenues disponibles récemment. La distinction entre les fermetures et les créations d'entreprises et le renouvellement de l'échantillon est essentielle pour ces résultats. Nous constatons également que si l'emploi des petites entreprises s'est contracté plus fortement au début de la pandémie que celui des grandes entreprises, il s'est également rétabli plus rapidement par la suite. Par ailleurs, nos estimations suggèrent que le déploiement rapide des prêts du PPP a considérablement atténué les effets négatifs de la pandémie sur l'emploi. Les fermetures et créations d'entreprises sont un facteur clé pour ces deux résultats, soulignant ainsi l'importance de corriger correctement le taux de rotation de l'échantillon.

Suggested Citation

  • André Kurmann & Étienne Lalé & Lien Ta, 2022. "Measuring Small Business Dynamics and Employment with Private-Sector Real-Time Data," CIRANO Working Papers 2022s-23, CIRANO.
  • Handle: RePEc:cir:cirwor:2022s-23
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/2022s-23.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Enghin Atalay & Shigeru Fujita & Sreyas Mahadevan & Ryan Michaels & Tal Roded, 2020. "Reopening the Economy: What Are the Risks, and What Have States Done?," Research Brief, Federal Reserve Bank of Philadelphia, July.
    2. Cynthia L. Doniger & Benjamin S. Kay, 2021. "Ten Days Late and Billions of Dollars Short: The Employment Effects of Delays in Paycheck Protection Program Financing," Finance and Economics Discussion Series 2021-003, Board of Governors of the Federal Reserve System (U.S.).
    3. Keith Barnatchez & Leland D. Crane & Ryan A. Decker, 2017. "An Assessment of the National Establishment Time Series (NETS) Database," Finance and Economics Discussion Series 2017-110, Board of Governors of the Federal Reserve System (U.S.).
    4. Goolsbee, Austan & Syverson, Chad, 2021. "Fear, lockdown, and diversion: Comparing drivers of pandemic economic decline 2020," Journal of Public Economics, Elsevier, vol. 193(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Granja, João & Makridis, Christos & Yannelis, Constantine & Zwick, Eric, 2022. "Did the paycheck protection program hit the target?," Journal of Financial Economics, Elsevier, vol. 145(3), pages 725-761.
    2. Charlene Marie Kalenkoski & Sabrina Wulff Pabilonia, 2022. "Impacts of COVID-19 on the self-employed," Small Business Economics, Springer, vol. 58(2), pages 741-768, February.
    3. Wright, Austin L. & Sonin, Konstantin & Driscoll, Jesse & Wilson, Jarnickae, 2020. "Poverty and economic dislocation reduce compliance with COVID-19 shelter-in-place protocols," Journal of Economic Behavior & Organization, Elsevier, vol. 180(C), pages 544-554.
    4. Couch, Kenneth A. & Fairlie, Robert W. & Xu, Huanan, 2020. "Early evidence of the impacts of COVID-19 on minority unemployment," Journal of Public Economics, Elsevier, vol. 192(C).
    5. Shun-Yang Lee & Julian Runge & Daniel Yoo & Yakov Bart & Anett Gyurak & J. W. Schneider, 2023. "COVID-19 Demand Shocks Revisited: Did Advertising Technology Help Mitigate Adverse Consequences for Small and Midsize Businesses?," Papers 2307.09035, arXiv.org, revised Jan 2024.
    6. Juan C. Palomino & Juan G. Rodríguez & Raquel Sebastian, 2023. "The COVID-19 shock on the labour market: poverty and inequality effects across Spanish regions," Regional Studies, Taylor & Francis Journals, vol. 57(5), pages 814-828, May.
    7. Nicola Fuchs-Schündeln & Dirk Krueger & André Kurmann & Etienne Lalé & Alexander Ludwig & Irina Popova, 2023. "The Fiscal and Welfare Effects of Policy Responses to the Covid-19 School Closures," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(1), pages 35-98, March.
    8. Xiao Chen & Hanwei Huang & Jiandong Ju & Ruoyan Sun & Jialiang Zhang, 2022. "Endogenous cross-region human mobility and pandemics," CEP Discussion Papers dp1860, Centre for Economic Performance, LSE.
    9. Marsh, W. Blake & Sharma, Padma, 2024. "Loan guarantees in a crisis: An antidote to a credit crunch?," Journal of Financial Stability, Elsevier, vol. 72(C).
    10. Arthi, Vellore & Parman, John, 2021. "Disease, downturns, and wellbeing: Economic history and the long-run impacts of COVID-19," Explorations in Economic History, Elsevier, vol. 79(C).
    11. Staples, Aaron J. & Deming, Kristopher & Malone, Trey & Carpenter, Craig W. & Weiler, Stephan, 2024. "Pouring the Paycheck Protection Program into craft beer: PPP employment effects in service-intensive industries," Journal of Business Venturing Insights, Elsevier, vol. 21(C).
    12. John Gathergood & Fabian Gunzinger & Benedict Guttman-Kenney & Edika Quispe-Torreblanca & Neil Stewart, 2020. "Levelling Down and the COVID-19 Lockdowns: Uneven Regional Recovery in UK Consumer Spending," Papers 2012.09336, arXiv.org, revised Dec 2020.
    13. Balgová, Mária & Trenkle, Simon & Zimpelmann, Christian & Pestel, Nico, 2022. "Job search during a pandemic recession: Survey evidence from the Netherlands," Labour Economics, Elsevier, vol. 75(C).
    14. Bisin, Alberto & Moro, Andrea, 2022. "Spatial‐SIR with network structure and behavior: Lockdown rules and the Lucas critique," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 370-388.
    15. Dirk Niepelt & Mart n Gonzalez-Eiras, 2020. "Optimally Controlling an Epidemic," Diskussionsschriften dp2019, Universitaet Bern, Departement Volkswirtschaft.
    16. Severin Reissl & Alessandro Caiani & Francesco Lamperti & Mattia Guerini & Fabio Vanni & Giorgio Fagiolo & Tommaso Ferraresi & Leonardo Ghezzi & Mauro Napoletano & Andrea Roventini, 2022. "Assessing the Economic Impact of Lockdowns in Italy: A Computational Input–Output Approach [Nonlinear Production Networks with an Application to the Covid-19 Crisis]," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 31(2), pages 358-409.
    17. Orrenius, Pia M. & Zavodny, Madeline & Abraham, Alexander, 2020. "The Effect of Immigration on Business Dynamics and Employment," IZA Discussion Papers 13014, Institute of Labor Economics (IZA).
    18. Chen, Simiao & Prettner, Klaus & Kuhn, Michael & Bloom, David E., 2021. "The economic burden of COVID-19 in the United States: Estimates and projections under an infection-based herd immunity approach," The Journal of the Economics of Ageing, Elsevier, vol. 20(C).
    19. Checo Ariadne & Grigoli Francesco & Mota Jose M., 2022. "Assessing Targeted Containment Policies to Fight COVID-19," The B.E. Journal of Macroeconomics, De Gruyter, vol. 22(1), pages 159-196, January.
    20. Martin Bodenstein & Giancarlo Corsetti & Luca Guerrieri, 2022. "Social distancing and supply disruptions in a pandemic," Quantitative Economics, Econometric Society, vol. 13(2), pages 681-721, May.

    More about this item

    Keywords

    Economics of small and medium enterprises; Labor turnover; Sampling bias; Matched data; COVID-19; Sector policies; Economie des petites et moyennes entreprises; Rotation de la main d’œuvre; Biais d’échantillonnage; Données appariées; COVID-19; Politiques sectorielles;
    All these keywords.

    JEL classification:

    • E01 - Macroeconomics and Monetary Economics - - General - - - Measurement and Data on National Income and Product Accounts and Wealth; Environmental Accounts
    • E24 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E60 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2022s-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.