IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/25913.html
   My bibliography  Save this paper

Financial Forecast for the Relative Strength Index

Author

Listed:
  • Alfaro, Rodrigo
  • Sagner, Andres

Abstract

In this paper we provide a closed-form expression for one of the most popular index in Technical Analysis: the Relative Strength Index (RSI). Given that we show how the standard binomial model for the stock price can be used to predict RSI. The algorithm is as simple as to code a standard European option. In an empirical application to the Chilean exchange rate we show how the method works having a better out of sample performance than an ARMA(1,1) model.

Suggested Citation

  • Alfaro, Rodrigo & Sagner, Andres, 2010. "Financial Forecast for the Relative Strength Index," MPRA Paper 25913, University Library of Munich, Germany, revised Apr 2010.
  • Handle: RePEc:pra:mprapa:25913
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/25913/1/MPRA_paper_25913.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ana María Abarca G. & Felipe Alarcón G. & Pablo Pincheira B. & Jorge Selaive C., 2007. "Nominal Exchange Rate in Chile: Predictions based on technical analysis," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 10(2), pages 57-80, August.
    2. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    3. Ullah, Aman, 2004. "Finite Sample Econometrics," OUP Catalogue, Oxford University Press, number 9780198774488.
    4. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenglong Li & Vincent Tam & Kwan L. Yeung, 2024. "Developing A Multi-Agent and Self-Adaptive Framework with Deep Reinforcement Learning for Dynamic Portfolio Risk Management," Papers 2402.00515, arXiv.org, revised Sep 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodrigo Alfaro & Andrés Sagner, 2009. "When RSI met the Binomial-Tree," Working Papers Central Bank of Chile 520, Central Bank of Chile.
    2. Diego Amaya & Jean-François Bégin & Geneviève Gauthier, 2022. "The Informational Content of High-Frequency Option Prices," Management Science, INFORMS, vol. 68(3), pages 2166-2201, March.
    3. Bianconi, Marcelo & MacLachlan, Scott & Sammon, Marco, 2015. "Implied volatility and the risk-free rate of return in options markets," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 1-26.
    4. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    5. Christophe Chorro & Dominique Guegan & Florian Ielpo, 2010. "Option pricing for GARCH-type models with generalized hyperbolic innovations," Post-Print halshs-00469529, HAL.
    6. G. C. Lim & G. M. Martin & V. L. Martin, 2005. "Parametric pricing of higher order moments in S&P500 options," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 377-404, March.
    7. Leippold, Markus & Vasiljević, Nikola, 2017. "Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 78-94.
    8. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
    9. Byun, Suk Joon & Jeon, Byoung Hyun & Min, Byungsun & Yoon, Sun-Joong, 2015. "The role of the variance premium in Jump-GARCH option pricing models," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 38-56.
    10. Maciej Kostrzewski & Jadwiga Kostrzewska, 2021. "The Impact of Forecasting Jumps on Forecasting Electricity Prices," Energies, MDPI, vol. 14(2), pages 1-17, January.
    11. silvia Muzzioli & Alessio Ruggieri, 2013. "Option Implied Trees and Implied Moments," Department of Economics (DEMB) 0015, University of Modena and Reggio Emilia, Department of Economics "Marco Biagi".
    12. Maria Gonzalez-Perez & Alfonso Novales, 2011. "The information content in a volatility index for Spain," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 2(2), pages 185-216, June.
    13. Angelidis, Timotheos & Degiannakis, Stavros, 2008. "Volatility forecasting: Intra-day versus inter-day models," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 18(5), pages 449-465, December.
    14. Chalamandaris, Georgios & Tsekrekos, Andrianos E., 2010. "Predictable dynamics in implied volatility surfaces from OTC currency options," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1175-1188, June.
    15. Bronka Rzepkowski, 2002. "Heterogeneous expectations, currency options and the euro/dollar," Quantitative Finance, Taylor & Francis Journals, vol. 2(2), pages 147-157.
    16. Silvia Muzzioli & Luca Gambarelli & Bernard De Baets, 2018. "Indices for Financial Market Volatility Obtained Through Fuzzy Regression," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(06), pages 1659-1691, November.
    17. Cordis, Adriana S. & Kirby, Chris, 2014. "Discrete stochastic autoregressive volatility," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 160-178.
    18. Guo, Jingjun & Kang, Weiyi & Wang, Yubing, 2024. "Multi-perspective option price forecasting combining parametric and non-parametric pricing models with a new dynamic ensemble framework," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
    19. Gradojevic Nikola, 2016. "Multi-criteria classification for pricing European options," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(2), pages 123-139, April.
    20. Xinglin Yang, 2018. "Good jump, bad jump, and option valuation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(9), pages 1097-1125, September.

    More about this item

    Keywords

    Relative Strength Index; Binomial Model; Financial Forecast;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:25913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.