IDEAS home Printed from https://ideas.repec.org/p/cfr/cefirw/w0228.html
   My bibliography  Save this paper

Market Microstructure Invariance: A Dynamic Equilibrium Model

Author

Listed:
  • Albert S. Kyle

    (Robert H. Smith School of Business, University of Maryland)

  • Anna Obizhaeva

    (New Economic School)

Abstract

We derive invariance relationships for a dynamic infinite-horizon model of market microstructure with risk-neutral informed trading, noise trading, market making, and endogenous production of information. Equilibrium prices follow a martingale with endogenously derived stochastic volatility. The invariance relationships for bet sizes and transaction costs are obtained under the assumption that the effort required to generate one discrete bet does not vary across securities and time. The invariance relationships for pricing accuracy and market resiliency require the additional assumption that private information has the same signal-to-noise ratio across markets. Since bets are based on the arrival of discrete chunks of information, the structural model describes how the invariance relationships reflect differences in the granularity of information flows across markets. The model links proportionality coefficients in invariance relationships to fundamental parameters.

Suggested Citation

  • Albert S. Kyle & Anna Obizhaeva, 2016. "Market Microstructure Invariance: A Dynamic Equilibrium Model," Working Papers w0228, Center for Economic and Financial Research (CEFIR).
  • Handle: RePEc:cfr:cefirw:w0228
    as

    Download full text from publisher

    File URL: http://www.cefir.ru/papers/WP228.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tauchen, George E & Pitts, Mark, 1983. "The Price Variability-Volume Relationship on Speculative Markets," Econometrica, Econometric Society, vol. 51(2), pages 485-505, March.
    2. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    3. Anna, Petrenko, 2016. "Мaркування готової продукції як складова частина інформаційного забезпечення маркетингової діяльності підприємств овочепродуктового підкомплексу," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 2(1), March.
    4. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    5. Harris, Lawrence, 1987. "Transaction Data Tests of the Mixture of Distributions Hypothesis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(2), pages 127-141, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mathias Pohl & Alexander Ristig & Walter Schachermayer & Ludovic Tangpi, 2017. "The amazing power of dimensional analysis: Quantifying market impact," Papers 1702.05434, arXiv.org, revised Sep 2017.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albert S. Kyle & Anna Obizhaeva, 2016. "Market Microstructure Invariance: A Dynamic Equilibrium Model," Working Papers w0228, New Economic School (NES).
    2. Loredana Ureche-Rangau & Quiterie de Rorthays, 2009. "More on the volatility-trading volume relationship in emerging markets: The Chinese stock market," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(7), pages 779-799.
    3. Carlos A. Abanto‐Valle & Helio S. Migon & Hedibert F. Lopes, 2010. "Bayesian modeling of financial returns: A relationship between volatility and trading volume," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(2), pages 172-193, March.
    4. Slim, Skander & Dahmene, Meriam, 2016. "Asymmetric information, volatility components and the volume–volatility relationship for the CAC40 stocks," Global Finance Journal, Elsevier, vol. 29(C), pages 70-84.
    5. Ronald Mahieu & Rob Bauer, 1998. "A Bayesian analysis of stock return volatility and trading volume," Applied Financial Economics, Taylor & Francis Journals, vol. 8(6), pages 671-687.
    6. Andersen, Torben G, 1996. "Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility," Journal of Finance, American Finance Association, vol. 51(1), pages 169-204, March.
    7. Ha, Daesung & Chang, S. J., 1998. "The distribution of transaction intervals in common stock trading," International Review of Economics & Finance, Elsevier, vol. 7(1), pages 103-115.
    8. Jinliang Li & Chunchi Wu, 2006. "Daily Return Volatility, Bid-Ask Spreads, and Information Flow: Analyzing the Information Content of Volume," The Journal of Business, University of Chicago Press, vol. 79(5), pages 2697-2740, September.
    9. Liesenfeld, Roman, 1997. "Trading volume and the short and long-run components of volatility," Tübinger Diskussionsbeiträge 102, University of Tübingen, School of Business and Economics.
    10. Mixon, Scott, 2001. "Volume and Volatility: News or Noise?," The Financial Review, Eastern Finance Association, vol. 36(4), pages 99-118, November.
    11. Michelle B Graczyk & Sílvio M Duarte Queirós, 2017. "Intraday seasonalities and nonstationarity of trading volume in financial markets: Collective features," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-23, July.
    12. Geir H. Bjønnes & Dagfinn Rime & Haakon O. Aa. Solheim, 2002. "Volume and Volatility in the FX-Market: Does it matter who you are?," CESifo Working Paper Series 786, CESifo.
    13. Eric Ghysels & Christian Gouriéroux & Joann Jasiak, 1995. "Market Time and Asset Price Movements Theory and Estimation," CIRANO Working Papers 95s-32, CIRANO.
    14. David McMillan & Alan Speight, 2002. "Return-volume dynamics in UK futures," Applied Financial Economics, Taylor & Francis Journals, vol. 12(10), pages 707-713.
    15. Beum-Jo Park, 2011. "Forecasting Volatility in Financial Markets Using a Bivariate Stochastic Volatility Model with Surprising Information," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 37-58, September.
    16. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    17. Gu, Gao-Feng & Xiong, Xiong & Zhang, Yong-Jie & Chen, Wei & Zhang, Wei & Zhou, Wei-Xing, 2016. "Stylized facts of price gaps in limit order books," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 48-58.
    18. Niklas Wagner & Terry Marsh, 2005. "Surprise volume and heteroskedasticity in equity market returns," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 153-168.
    19. Pengfei Wang & Wei Zhang & Xiao Li & Dehua Shen, 2019. "Trading volume and return volatility of Bitcoin market: evidence for the sequential information arrival hypothesis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(2), pages 377-418, June.
    20. Rodriguez, E. & Alvarez-Ramirez, J., 2021. "Time-varying cross-correlation between trading volume and returns in US stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cfr:cefirw:w0228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Julia Babich (email available below). General contact details of provider: https://edirc.repec.org/data/cefirru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.