IDEAS home Printed from https://ideas.repec.org/p/cfe/wpcefa/2019_07.html
   My bibliography  Save this paper

ARFIMA Reference Forecasts for Worldwide CO2 Emissions and the National Dimension of the Policy Efforts to Meet IPCC Targets

Author

Listed:
  • José Manuel Madeira Belbute

    (CEFAGE)

Abstract

We use an ARFIMA approach to develop reference scenario projections for CO2 emissions worldwide and for seven different regions. Our objective is to determine the magnitude of the policy efforts necessary to achieve the IPCC emissions reductions goals. For worldwide emissions, the aggregate policy effort required to achieve the 2050 goals is equivalent to 97.4% of 2010 emissions. This policy effort is frontloaded as about 60% of such efforts would have to occur by 2030. In order to achieve the IPCC target the policy efforts in the cases of the USA, EU(28), Russia, and Japan - which account for 32% of worldwide emissions, are lower and less frontloaded than the IPCC goals themselves. In the case of China, India and the ROW, which account for 68% of worldwide emissions, additional policy efforts are necessary to achieve reductions in emissions of 105.0%, 156.0% and 111.4%, of the 2010 levels, respectively. In the case of India, policy efforts are not only rather severe but also rather dramatically frontloaded, as about 74% of the policy efforts would have to occur by 2030. Our results suggest that the policies toward decarbonization must consider the specific regional characteristics of emissions. Given the differences in the inertia of emissions in the different regions a one-size fits all approach is not the best approach.

Suggested Citation

  • José Manuel Madeira Belbute, 2019. "ARFIMA Reference Forecasts for Worldwide CO2 Emissions and the National Dimension of the Policy Efforts to Meet IPCC Targets," CEFAGE-UE Working Papers 2019_07, University of Evora, CEFAGE-UE (Portugal).
  • Handle: RePEc:cfe:wpcefa:2019_07
    as

    Download full text from publisher

    File URL: https://api.cefage.uevora.pt/assets/89bfaf9d-c3b4-4402-9bef-347c2fc89446
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Apergis, Nicholas & Tsoumas, Chris, 2012. "Long memory and disaggregated energy consumption: Evidence from fossils, coal and electricity retail in the U.S," Energy Economics, Elsevier, vol. 34(4), pages 1082-1087.
    2. Carlos Barros & Luis Gil-Alana & Fernando Perez de Gracia, 2016. "Stationarity and Long Range Dependence of Carbon Dioxide Emissions: Evidence for Disaggregated Data," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(1), pages 45-56, January.
    3. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belbute, José M. & Pereira, Alfredo M., 2022. "ARFIMA Reference Forecasts for Worldwide CO2 Emissions and the National Dimension of the Policy Efforts to Meet IPCC Targets," Journal of Economic Development, The Economic Research Institute, Chung-Ang University, vol. 47(1), pages 1-27, March.
    2. Belbute, José M. & Pereira, Alfredo M., 2020. "Reference forecasts for CO2 emissions from fossil-fuel combustion and cement production in Portugal," Energy Policy, Elsevier, vol. 144(C).
    3. Guglielmo Maria Caporale & Luis A. Gil-Alana & Manuel Monge, 2019. "Energy Consumption in the GCC Countries: Evidence on Persistence," CESifo Working Paper Series 7470, CESifo.
    4. repec:cfe:wpcefa:2016_08 is not listed on IDEAS
    5. Cai, Yifei & Menegaki, Angeliki N., 2019. "Fourier quantile unit root test for the integrational properties of clean energy consumption in emerging economies," Energy Economics, Elsevier, vol. 78(C), pages 324-334.
    6. Smyth, Russell & Narayan, Paresh Kumar, 2015. "Applied econometrics and implications for energy economics research," Energy Economics, Elsevier, vol. 50(C), pages 351-358.
    7. Bilal Mehmood & Syed Hassan Raza & Mahwish Rana & Huma Sohaib & Muhammad Azhar Khan, 2014. "Triangular Relationship between Energy Consumption, Price Index and National Income in Asian Countries: A Pooled Mean Group Approach in Presence of Structural Breaks," International Journal of Energy Economics and Policy, Econjournals, vol. 4(4), pages 610-620.
    8. Matteo Mogliani, 2010. "Residual-based tests for cointegration and multiple deterministic structural breaks: A Monte Carlo study," Working Papers halshs-00564897, HAL.
    9. Aye, Goodness & Gupta, Rangan & Hammoudeh, Shawkat & Kim, Won Joong, 2015. "Forecasting the price of gold using dynamic model averaging," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 257-266.
    10. Mariam Camarero & Juan Sapena & Cecilio Tamarit, 2020. "Modelling Time-Varying Parameters in Panel Data State-Space Frameworks: An Application to the Feldstein–Horioka Puzzle," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 87-114, June.
    11. Bernard, Jean-Thomas & Idoudi, Nadhem & Khalaf, Lynda & Yelou, Clement, 2007. "Finite sample multivariate structural change tests with application to energy demand models," Journal of Econometrics, Elsevier, vol. 141(2), pages 1219-1244, December.
    12. Nuruddeen Usman & Kodili Nwanneka & Nduka, 2023. "Announcement Effect of COVID-19 on Cryptocurrencies," Asian Economics Letters, Asia-Pacific Applied Economics Association, vol. 3(3), pages 1-4.
    13. Kevin S. Nell & Maria M. De Mello, 2019. "The interdependence between the saving rate and technology across regimes: evidence from South Africa," Empirical Economics, Springer, vol. 56(1), pages 269-300, January.
    14. Ngene, Geoffrey & Tah, Kenneth A. & Darrat, Ali F., 2017. "Long memory or structural breaks: Some evidence for African stock markets," Review of Financial Economics, Elsevier, vol. 34(C), pages 61-73.
    15. Parma Chakravartti & Sudipto Mundle, 2017. "An Automatic Leading Indicator Based Growth Forecast For 2016-17 and The Outlook Beyond," Working Papers id:11773, eSocialSciences.
    16. Mina Kim & Deokwoo Nam & Jian Wang & Jason J. Wu, 2013. "International trade price stickiness and exchange rate pass-through in micro data: a case study on U.S.–China trade," Globalization Institute Working Papers 135, Federal Reserve Bank of Dallas.
    17. Nikeel Kumar & Ronald Ravinesh Kumar & Radika Kumar & Peter Josef Stauvermann, 2020. "Is the tourism–growth relationship asymmetric in the Cook Islands? Evidence from NARDL cointegration and causality tests," Tourism Economics, , vol. 26(4), pages 658-681, June.
    18. Meng Xu & Avishai Ceder & Ziyou Gao & Wei Guan, 2010. "Mass transit systems of Beijing: governance evolution and analysis," Transportation, Springer, vol. 37(5), pages 709-729, September.
    19. Stephen G Cecchetti & Alfonso Flores-Lagunes & Stefan Krause, 2005. "Assessing the Sources of Changes in the Volatility of Real Growth," RBA Annual Conference Volume (Discontinued), in: Christopher Kent & David Norman (ed.),The Changing Nature of the Business Cycle, Reserve Bank of Australia.
    20. Marfatia, Hardik A., 2015. "Monetary policy's time-varying impact on the US bond markets: Role of financial stress and risks," The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 103-123.
    21. Young Hoon Lee, 2009. "The Impact of Postseason Restructuring on the Competitive Balance and Fan Demand in Major League Baseball," Journal of Sports Economics, , vol. 10(3), pages 219-235, June.

    More about this item

    Keywords

    CO2 emissions; IPCC emission targets; long memory; ARFIMA;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cfe:wpcefa:2019_07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Angela Pacheco (email available below). General contact details of provider: https://edirc.repec.org/data/cfevopt.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.