IDEAS home Printed from https://ideas.repec.org/p/ceu/econwp/2012_9.html
   My bibliography  Save this paper

Inverse Propensity Score Weighted Estimation of Local Average Treatment Effects and a Test of the Unconfoundedness Assumption

Author

Listed:
  • Stephen G. Donald
  • Yu-Chin Hsu
  • Robert P. Lieli

Abstract

We propose inverse probability weighted estimators for the the local average treatment effect (LATE) and the local average treatment effect for the treated (LATT) under instrumental variable assumptions with covariates. We show that these estimators are asymptotically normal and efficient, and provide a higher order asymptotic mean squared error expansion for the LATE estimator. When the (binary) instrument satisfies a condition called one-sided non-compliance, we propose a Hausman-type test of whether treatment assignment is unconfounded conditional on some observables. The test is based on the fact that under one-sided non-compliance LATT coincides with the average treatment effect for the treated. We evaluate the effect of JTPA training programs on the earnings of participants to illustrate our methods. The unconfoundedness test suggests that treatment assignment among males is based partly on unobservables. In contrast, the hypothesis of random treatment assignment cannot be rejected among females.

Suggested Citation

  • Stephen G. Donald & Yu-Chin Hsu & Robert P. Lieli, 2010. "Inverse Propensity Score Weighted Estimation of Local Average Treatment Effects and a Test of the Unconfoundedness Assumption," CEU Working Papers 2012_9, Department of Economics, Central European University, revised 11 Aug 2010.
  • Handle: RePEc:ceu:econwp:2012_9
    as

    Download full text from publisher

    File URL: https://ceu-economics-and-business.github.io/RePEc/pdf/2012_9.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Frölich, Markus & Lechner, Michael, 2010. "Exploiting Regional Treatment Intensity for the Evaluation of Labor Market Policies," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1014-1029.
    2. Angus Deaton, 2009. "Instruments of development: Randomization in the tropics, and the search for the elusive keys to economic development," Working Papers 1128, Princeton University, Woodrow Wilson School of Public and International Affairs, Center for Health and Wellbeing..
    3. Alberto Abadie & Joshua Angrist & Guido Imbens, 2002. "Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings," Econometrica, Econometric Society, vol. 70(1), pages 91-117, January.
    4. Markus Frölich & Blaise Melly, 2013. "Unconditional Quantile Treatment Effects Under Endogeneity," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 346-357, July.
    5. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    6. Heckman, James J. & Urzúa, Sergio, 2010. "Comparing IV with structural models: What simple IV can and cannot identify," Journal of Econometrics, Elsevier, vol. 156(1), pages 27-37, May.
    7. Frolich, Markus, 2007. "Nonparametric IV estimation of local average treatment effects with covariates," Journal of Econometrics, Elsevier, vol. 139(1), pages 35-75, July.
    8. Abadie, Alberto, 2003. "Semiparametric instrumental variable estimation of treatment response models," Journal of Econometrics, Elsevier, vol. 113(2), pages 231-263, April.
    9. Guido W. Imbens, 2010. "Better LATE Than Nothing: Some Comments on Deaton (2009) and Heckman and Urzua (2009)," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 399-423, June.
    10. repec:pri:cheawb:deaton%20instruments%20of%20development%20keynes%20lecture%202009 is not listed on IDEAS
    11. Markus Frölich & Blaise Melly, 2013. "Identification of Treatment Effects on the Treated with One-Sided Non-Compliance," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 384-414, November.
    12. repec:pri:cheawb:deaton%20instruments%20of%20development%20keynes%20lecture%202009.pdf is not listed on IDEAS
    13. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(2), pages 261-294.
    14. James Heckman, 1997. "Instrumental Variables: A Study of Implicit Behavioral Assumptions Used in Making Program Evaluations," Journal of Human Resources, University of Wisconsin Press, vol. 32(3), pages 441-462.
    15. Elias Masry, 1996. "Multivariate Local Polynomial Regression For Time Series:Uniform Strong Consistency And Rates," Journal of Time Series Analysis, Wiley Blackwell, vol. 17(6), pages 571-599, November.
    16. repec:pri:rpdevs:instruments_of_development.pdf is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Markus Frölich & Blaise Melly, 2013. "Identification of Treatment Effects on the Treated with One-Sided Non-Compliance," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 384-414, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huber, Martin & Wüthrich, Kaspar, 2017. "Evaluating local average and quantile treatment effects under endogeneity based on instruments: a review," FSES Working Papers 479, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    2. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    3. Huber Martin & Wüthrich Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
    4. Joshua Angrist & Miikka Rokkanen, 2012. "Wanna Get Away? RD Identification Away from the Cutoff," NBER Working Papers 18662, National Bureau of Economic Research, Inc.
    5. Peter Hull & Michal Kolesár & Christopher Walters, 2022. "Labor by design: contributions of David Card, Joshua Angrist, and Guido Imbens," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(3), pages 603-645, July.
    6. Jason Abrevaya & Yu-Chin Hsu & Robert P. Lieli, 2015. "Estimating Conditional Average Treatment Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 485-505, October.
    7. Kaspar Wüthrich, 2020. "A Comparison of Two Quantile Models With Endogeneity," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 443-456, April.
    8. Stefanie Behncke, 2012. "Does retirement trigger ill health?," Health Economics, John Wiley & Sons, Ltd., vol. 21(3), pages 282-300, March.
    9. Committee, Nobel Prize, 2021. "Answering causal questions using observational data," Nobel Prize in Economics documents 2021-2, Nobel Prize Committee.
    10. Blaise Melly und Kaspar W thrich, 2016. "Local quantile treatment effects," Diskussionsschriften dp1605, Universitaet Bern, Departement Volkswirtschaft.
    11. Lechner, Michael, 2013. "Treatment effects and panel data," Economics Working Paper Series 1314, University of St. Gallen, School of Economics and Political Science.
    12. Luc Behaghel & Clément de Chaisemartin & Marc Gurgand, 2017. "Ready for Boarding? The Effects of a Boarding School for Disadvantaged Students," American Economic Journal: Applied Economics, American Economic Association, vol. 9(1), pages 140-164, January.
    13. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    14. Maier, Michael, 2011. "Tests for distributional treatment effects under unconfoundedness," Economics Letters, Elsevier, vol. 110(1), pages 49-51, January.
    15. Aassve, Arnstein & Arpino, Bruno, 2008. "Estimation of causal effects of fertility on economic wellbeing: evidence from rural Vietnam," ISER Working Paper Series 2007-27, Institute for Social and Economic Research.
    16. Joshua D. Angrist & Jörn-Steffen Pischke, 2010. "The Credibility Revolution in Empirical Economics: How Better Research Design Is Taking the Con out of Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 24(2), pages 3-30, Spring.
    17. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    18. Markus Frölich & Martin Huber, 2014. "Treatment Evaluation With Multiple Outcome Periods Under Endogeneity and Attrition," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1697-1711, December.
    19. Marco Caliendo & Sabine Kopeinig, 2008. "Some Practical Guidance For The Implementation Of Propensity Score Matching," Journal of Economic Surveys, Wiley Blackwell, vol. 22(1), pages 31-72, February.
    20. Tamini, Lota D., 2011. "A nonparametric analysis of the impact of agri-environmental advisory activities on best management practice adoption: A case study of Québec," Ecological Economics, Elsevier, vol. 70(7), pages 1363-1374, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ceu:econwp:2012_9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anita Apor (email available below). General contact details of provider: https://edirc.repec.org/data/deceuat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.